2013
Implementation of logistic regression into technical analysis
HRUŠKA, JurajZákladní údaje
Originální název
Implementation of logistic regression into technical analysis
Autoři
HRUŠKA, Juraj (703 Slovensko, garant, domácí)
Vydání
Jihlava, Proceedings of the 31st International Conference Mathematical Methods in Economics 2013, od s. 297-302, 6 s. 2013
Nakladatel
College of Polytechnics Jihlava
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
50200 5.2 Economics and Business
Stát vydavatele
Česká republika
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
paměťový nosič (CD, DVD, flash disk)
Kód RIV
RIV/00216224:14560/13:00069574
Organizační jednotka
Ekonomicko-správní fakulta
ISBN
978-80-87035-76-4
UT WoS
000335578000051
Klíčová slova anglicky
logistic regression; technical analysis; moving averages; automated trading
Změněno: 7. 10. 2014 16:16, Ing. Mgr. Juraj Hruška, Ph.D.
Anotace
V originále
Most of the investment strategies based on technical analysis are based on the principle that your strategy should be as easy as it is possible; in order to simplify your decision making. Goal of this paper is to use more sophisticated methods to combine the signals from indicators of technical analysis to create advanced form of investing strategy, which will be sustainable in long run. This can be ensured by self-correcting mechanisms build-in the strategy itself. Econometrical methods will be used to determine whether some kind of indicator has it relevance on the chosen type of asset. All input variables will be time series of dummy variables showing whether the indicator is suggesting taking a long position or not and of course their lags. Explained variable will be the successful trade (the price movement upwards is greater then spread and commissions). For this kind of purposes logistic regression seems to be essential, which is widely used in credit scoring. Basically the problem whether to invest or not is the same issue as whether to give a customer a loan or not. The only difference will be in the type of data. Credit scoring use mostly panel data, however it will be handled solely with time series in this paper.
Návaznosti
MUNI/A/0753/2012, interní kód MU |
|