2014
Efficient k-NN based HEp-2 cells classifier
STOKLASA, Roman, Tomáš MAJTNER a David SVOBODAZákladní údaje
Originální název
Efficient k-NN based HEp-2 cells classifier
Autoři
STOKLASA, Roman (703 Slovensko, garant, domácí), Tomáš MAJTNER (703 Slovensko, domácí) a David SVOBODA (203 Česká republika, domácí)
Vydání
PATTERN RECOGNITION, OXFORD, PERGAMON-ELSEVIER SCIENCE LTD, 2014, 0031-3203
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.096
Kód RIV
RIV/00216224:14330/14:00073423
Organizační jednotka
Fakulta informatiky
UT WoS
000334978100012
Klíčová slova anglicky
HEp-2 cells; Classifier; Image descriptor; Classification; Nearest neighbours; IIF; Indirect Immunofluorescence
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 4. 2015 21:41, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Human Epithelial (HEp-2) cells are commonly used in the Indirect Immunofluorescence (IIF) tests to detect autoimmune diseases. The diagnosis consists of searching and classification to specific patterns created by Anti-Nuclear Antibodies (ANAs) in the patient serum. Evaluation of the IIF test is mostly done by humans, which means that it is highly dependent on the experience and expertise of the physician. Therefore, a significant amount of research has been focused on the development of computer aided diagnostic systems which could help with the analysis of images from microscopes. This work deals with the design and development of HEp-2 cells classifier. The classifier is able to categorize pre-segmented images of HEp-2 cells into 6 classes. The core of this engine consists of the following image descriptors: Haralick features, Local Binary Patterns, SIFT, surface description and a granulometry-based descriptor. These descriptors produce vectors that form metric spaces. k-NN classification is based on aggregated distance function which combines several features together. An extensive set of evaluations was performed on the publicly available MIVIA HEp-2 images dataset which allows a direct comparison of our approach with other solutions. The results show that our approach is one of the leading classifiers when comparing with other participants in the HEp-2 Cells Classification Contest.
Návaznosti
GBP302/12/G157, projekt VaV |
| ||
MUNI/A/0855/2013, interní kód MU |
|