2013
On Realization of Partially Ordered Abelian Groups
PASEKA, Jan, Ivan CHAJDA a Lei QUIANGZákladní údaje
Originální název
On Realization of Partially Ordered Abelian Groups
Autoři
PASEKA, Jan (203 Česká republika, garant, domácí), Ivan CHAJDA (203 Česká republika) a Lei QUIANG (156 Čína)
Vydání
International Journal of Theoretical Physics, Springer, 2013, 0020-7748
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.186
Kód RIV
RIV/00216224:14310/13:00070761
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000318373700031
Klíčová slova anglicky
Non-classical logics; Orthomodular lattice; Effect algebras; Generalized effect algebras; States; Generalized states; Operators on Hilbert spaces
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 3. 1. 2014 17:58, prof. RNDr. Jan Paseka, CSc.
Anotace
V originále
The paper is devoted to algebraic structures connected with the logic of quantum mechanics. Since every (generalized) effect algebra with an order determining set of (generalized) states can be represented by means of an abelian partially ordered group and events in quantum mechanics can be described by positive operators in a suitable Hilbert space, we are focused in a representation of partially ordered abelian groups by means of sets of suitable linear operators. We show that there is a set of points separating R-maps on a given partially ordered abelian group G if and only if there is an injective non-trivial homomorphism of G to the symmetric operators on a dense set in a complex Hilbert space H which is equivalent to an existence of an injective non-trivial homomorphism of G into a certain power of R. A similar characterization is derived for an order determining set of R-maps and symmetric operators on a dense set in a complex Hilbert space H . We also characterize effect algebras with an order determining set of states as interval operator effect algebras in groups of self-adjoint bounded linear operators.
Návaznosti
EE2.3.20.0051, projekt VaV |
|