2013
Incremental Sampling-Based Algorithm for Minimum-Violation Motion Planning
REYES CASTRO, Luis Ignacio, Pratik CHAUDHARI, Jana TŮMOVÁ, Sertac KARAMAN, Emilio FRAZZOLI et. al.Základní údaje
Originální název
Incremental Sampling-Based Algorithm for Minimum-Violation Motion Planning
Autoři
REYES CASTRO, Luis Ignacio (840 Spojené státy), Pratik CHAUDHARI (840 Spojené státy), Jana TŮMOVÁ (203 Česká republika, garant, domácí), Sertac KARAMAN (840 Spojené státy), Emilio FRAZZOLI (840 Spojené státy) a Daniela RUS (840 Spojené státy)
Vydání
Florence, Italy, Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC), 2013, od s. 3217-3224, 8 s. 2013
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
paměťový nosič (CD, DVD, flash disk)
Kód RIV
RIV/00216224:14330/13:00081960
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4673-5717-3
ISSN
UT WoS
000352223503105
Klíčová slova anglicky
motion planning; temporal logic; sampling-based planning; formal methods
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 5. 5. 2016 07:01, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
This paper studies the problem of control strategy synthesis for dynamical systems with differential constraints to fulfill a given reachability goal specification while satisfying a set of safety rules. Particular attention is devoted to goals that become feasible only if a subset of the safety rules are violated. The proposed algorithm computes a control law, that minimizes the level of unsafety while the desired goal is guaranteed to be reached. This problem is motivated by an autonomous car navigating an urban environment while following rules of the road such as "always travel in right lane" and "do not change lanes frequently". Ideas behind sampling based motion-planning algorithms, such as Probabilistic Road Maps (PRMs) and Rapidly-exploring Random Trees (RRTs), are employed to incrementally construct a finite concretization of the dynamics as a durational Kripke structure. In conjunction with this, a weighted finite automaton that captures the safety rules is used in order to find an optimal trajectory that minimizes the violation of safety rules. We prove that the proposed algorithm guarantees asymptotic optimality, i.e., almost-sure convergence to optimal solutions. We present results of simulation experiments and an implementation on an autonomous urban mobility-on-demand system.
Návaznosti
LH11065, projekt VaV |
| ||
MUNI/A/0760/2012, interní kód MU |
|