J 2014

Inter-regulation of the unfolded protein response and auxin signaling

CHEN, Yani, Kyaw AUNG, Jakub ROLČÍK, Kathryn WALICKI, Jiří FRIML et. al.

Základní údaje

Originální název

Inter-regulation of the unfolded protein response and auxin signaling

Autoři

CHEN, Yani (840 Spojené státy, garant), Kyaw AUNG (840 Spojené státy), Jakub ROLČÍK (203 Česká republika), Kathryn WALICKI (840 Spojené státy), Jiří FRIML (203 Česká republika, domácí) a Frederica BRANDIZZI (840 Spojené státy)

Vydání

Plant Journal, ENGLAND, Wiley-Blackwell Publishing, Inc. 2014, 0960-7412

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

Genetika a molekulární biologie

Stát vydavatele

Velká Británie a Severní Irsko

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 5.972

Kód RIV

RIV/00216224:14740/14:00075115

Organizační jednotka

Středoevropský technologický institut

UT WoS

000328661300008

Klíčová slova anglicky

endoplasmic reticulum stress; unfolded protein response; auxin response; IRE1; PIN5; Arabidopsis thaliana

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 17. 10. 2014 13:39, Martina Prášilová

Anotace

V originále

The unfolded protein response (UPR) is a signaling network triggered by overload of protein-folding demand in the endoplasmic reticulum (ER), a condition termed ER stress. The UPR is critical for growth and development; nonetheless, connections between the UPR and other cellular regulatory processes remain largely unknown. Here, we identify a link between the UPR and the phytohormone auxin, a master regulator of plant physiology. We show that ER stress triggers down-regulation of auxin receptors and transporters in Arabidopsis thaliana. We also demonstrate that an Arabidopsis mutant of a conserved ER stress sensor IRE1 exhibits defects in the auxin response and levels. These data not only support that the plant IRE1 is required for auxin homeostasis, they also reveal a species-specific feature of IRE1 in multicellular eukaryotes. Furthermore, by establishing that UPR activation is reduced in mutants of ER-localized auxin transporters, including PIN5, we define a long-neglected biological significance of ER-based auxin regulation. We further examine the functional relationship of IRE1 and PIN5 by showing that an ire1 pin5 triple mutant enhances defects of UPR activation and auxin homeostasis in ire1 or pin5. Our results imply that the plant UPR has evolved a hormone-dependent strategy for coordinating ER function with physiological processes.