2014
A performance evaluation of statistical tests for edge detection in textured images
WILLIAMS, Ian, Nicholas BOWRING a David SVOBODAZákladní údaje
Originální název
A performance evaluation of statistical tests for edge detection in textured images
Autoři
WILLIAMS, Ian (826 Velká Británie a Severní Irsko), Nicholas BOWRING (826 Velká Británie a Severní Irsko) a David SVOBODA (203 Česká republika, garant, domácí)
Vydání
Computer Vision and Image Understanding, Elsevier, 2014, 1077-3142
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
20200 2.2 Electrical engineering, Electronic engineering, Information engineering
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.540
Kód RIV
RIV/00216224:14330/14:00075212
Organizační jednotka
Fakulta informatiky
UT WoS
000334394900011
Klíčová slova anglicky
Edge detection; Statistical tests; Textured images; Histological images; Performance measures
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 4. 2015 03:20, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
This work presents an objective performance analysis of statistical tests for edge detection which are suitable for textured or cluttered images. The tests are subdivided into two-sample parametric and non-parametric tests and are applied using a dual-region based edge detector which analyses local image texture difference. Through a series of experimental tests objective results are presented across a comprehensive dataset of images using a Pixel Correspondence Metric (PCM). The results show that statistical tests can in many cases, outperform the Canny edge detection method giving robust edge detection, accurate edge localisation and improved edge connectivity throughout. A visual comparison of the tests is also presented using representative images taken from typical textured histological data sets. The results conclude that the non-parametric Chi Square and Kolmogorov Smirnov statistical tests are the most robust edge detection tests where image statistical properties cannot be assumed a priori or where intensity changes in the image are nonuniform and that the parametric Difference of Boxes test and the Student’s t-test are the most suitable for intensity based edges. Conclusions and recommendations are finally presented contrasting the tests and giving guidelines for their practical use while finally confirming which situations improved edge detection can be expected.