2013
Multi-objective Discounted Reward Verification in Graphs and MDPs
CHATTERJEE, Krishnendu, Vojtěch FOREJT a Dominik WOJTCZAKZákladní údaje
Originální název
Multi-objective Discounted Reward Verification in Graphs and MDPs
Autoři
CHATTERJEE, Krishnendu (356 Indie), Vojtěch FOREJT (203 Česká republika, garant, domácí) a Dominik WOJTCZAK (616 Polsko)
Vydání
Berlin, Heidelberg, Logic for Programming, Artificial Intelligence, and Reasoning, od s. 228-242, 15 s. 2013
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/13:00072859
Organizační jednotka
Fakulta informatiky
ISBN
978-3-642-45220-8
ISSN
Klíčová slova anglicky
multi-objective verification; markov decision processes; graphs
Změněno: 29. 4. 2014 20:09, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
We study the problem of achieving a given value in Markov decision processes (MDPs) with several independent discounted reward objectives. We consider a generalised version of discounted reward objectives, in which the amount of discounting depends on the states visited and on the objective. This definition extends the usual definition of discounted reward, and allows to capture the systems in which the value of different commodities diminish at different and variable rates. We establish results for two prominent subclasses of the problem, namely state-discount models where the discount factors are only dependent on the state of the MDP (and independent of the objective), and reward-discount models where they are only dependent on the objective (but not on the state of the MDP). For the state-discount models we use a straightforward reduction to expected total reward and show that the problem whether a value is achievable can be solved in polynomial time. For the reward-discount model we show that memory and randomisation of the strategies are required, but nevertheless that the problem is decidable and it is sufficient to consider strategies which after a certain number of steps behave in a memoryless way. For the general case, we show that when restricted to graphs (i.e. MDPs with no randomisation), pure strategies and discount factors of the form 1/n where n is an integer, the problem is in PSPACE and finite memory suffices for achieving a given value. We also show that when the discount factors are not of the form 1/n, the memory required by a strategy can be infinite.
Návaznosti
LG13010, projekt VaV |
| ||
MUNI/33/IP1/2013, interní kód MU |
|