2014
Rank Aggregation of Candidate Sets for Efficient Similarity Search
NOVÁK, David a Pavel ZEZULAZákladní údaje
Originální název
Rank Aggregation of Candidate Sets for Efficient Similarity Search
Autoři
NOVÁK, David (203 Česká republika, garant, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Haidelberg, 25th International Conference on Database and Expert Systems Applications (DEXA 2014 ), od s. 42-58, 17 s. 2014
Nakladatel
Springer International Publishing Switzerland
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
20201 Electrical and electronic engineering
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/14:00073743
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-10084-5
ISSN
Klíčová slova anglicky
Similarity Search; Metric Space; Approximation; Scalability
Změněno: 27. 4. 2015 05:47, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Many current applications need to organize data with respect to mutual similarity between data objects. Generic similarity retrieval in large data collections is a tough task that has been drawing researchers’ attention for two decades. A typical general strategy to retrieve the most similar objects to a given example is to access and then refine a candidate set of objects; the overall search costs (and search time) then typically correlate with the candidate set size. We propose a generic approach that combines several independent indexes by aggregating their candidate sets in such a way that the resulting candidate set can be one or two orders of magnitude smaller (while keeping the answer quality). This achievement comes at the expense of higher computational costs of the ranking algorithm but experiments on two real-life and one artificial datasets indicate that the overall gain can be significant.
Návaznosti
GBP103/12/G084, projekt VaV |
|