J 2014

Data Analysis in the Intelligent Building Environment

KRIKSCIUNIENE, Dalia, Tomáš PITNER, Adam KUČERA a Virgilijus SAKALAUSKAS

Základní údaje

Originální název

Data Analysis in the Intelligent Building Environment

Název česky

Analýza dat v prostředí inteligentních budov

Autoři

KRIKSCIUNIENE, Dalia (440 Litva, domácí), Tomáš PITNER (203 Česká republika, garant, domácí), Adam KUČERA (203 Česká republika, domácí) a Virgilijus SAKALAUSKAS (440 Litva)

Vydání

International Journal of Computer Science & Applications, Kolhapur, India, Technomathematics Research Foundation, 2014, 0972-9038

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Indie

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Kód RIV

RIV/00216224:14330/14:00076194

Organizační jednotka

Fakulta informatiky

Klíčová slova anglicky

Facility management; computational intelligence; machine learning; sensor networks; system integration; environmental conditions

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 10. 5. 2018 09:56, RNDr. Adam Kučera, Ph.D.

Anotace

V originále

The article addresses the problem of intelligent analysis and evaluation of facility management data gathered from heterogeneous sources, including environmental data collected from building automation sensors, temporal weather characteristics and scheduling. We suggest the framework of analytical model, based on deriving descriptors which could sentinel the level of thermal comfort of working environments. The model aims to facilitateprocess of extracting essential characteristics of facility management for detecting dependencies and observing anomalies. The framework aims to discover hidden relations between performance of building conditioning and environmental and spatial factors that cannot be observed from the building automation system itself. The performance of the model was tested by experimental analysis of facility management of the university cam- pus, designed for exploring how various environment variables affect temperature in the lecture rooms, equipped by the air conditioning devices. Based on the obtained results, we elaborate on further steps needed for beneficial, efficient and flexible data analysis system for the field of facility management.