2014
Data Analysis in the Intelligent Building Environment
KRIKSCIUNIENE, Dalia, Tomáš PITNER, Adam KUČERA a Virgilijus SAKALAUSKASZákladní údaje
Originální název
Data Analysis in the Intelligent Building Environment
Název česky
Analýza dat v prostředí inteligentních budov
Autoři
KRIKSCIUNIENE, Dalia (440 Litva, domácí), Tomáš PITNER (203 Česká republika, garant, domácí), Adam KUČERA (203 Česká republika, domácí) a Virgilijus SAKALAUSKAS (440 Litva)
Vydání
International Journal of Computer Science & Applications, Kolhapur, India, Technomathematics Research Foundation, 2014, 0972-9038
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Indie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Kód RIV
RIV/00216224:14330/14:00076194
Organizační jednotka
Fakulta informatiky
Klíčová slova anglicky
Facility management; computational intelligence; machine learning; sensor networks; system integration; environmental conditions
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 5. 2018 09:56, RNDr. Adam Kučera, Ph.D.
Anotace
V originále
The article addresses the problem of intelligent analysis and evaluation of facility management data gathered from heterogeneous sources, including environmental data collected from building automation sensors, temporal weather characteristics and scheduling. We suggest the framework of analytical model, based on deriving descriptors which could sentinel the level of thermal comfort of working environments. The model aims to facilitateprocess of extracting essential characteristics of facility management for detecting dependencies and observing anomalies. The framework aims to discover hidden relations between performance of building conditioning and environmental and spatial factors that cannot be observed from the building automation system itself. The performance of the model was tested by experimental analysis of facility management of the university cam- pus, designed for exploring how various environment variables affect temperature in the lecture rooms, equipped by the air conditioning devices. Based on the obtained results, we elaborate on further steps needed for beneficial, efficient and flexible data analysis system for the field of facility management.