2014
Automatic Identification of Solid-Phase Medication Intake Using Wireless Wearable Accelerometers
WANG, Rui, Zdeňka SITOVÁ, Xiaoqing JIA, Xiang HE, Tobi ABRAMSON et. al.Základní údaje
Originální název
Automatic Identification of Solid-Phase Medication Intake Using Wireless Wearable Accelerometers
Autoři
WANG, Rui (156 Čína), Zdeňka SITOVÁ (203 Česká republika, garant, domácí), Xiaoqing JIA (156 Čína), Xiang HE (156 Čína), Tobi ABRAMSON (840 Spojené státy), Paolo GASTI (840 Spojené státy), Kiran S. BALAGANI (840 Spojené státy) a Aydin FARAJIDAVAR (840 Spojené státy)
Vydání
New York, 36th Annual International IEEE Engineering in Medicine and Biology Society Conference (EMBS), 2014, od s. 4168-4171, 4 s. 2014
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Odkazy
Kód RIV
RIV/00216224:14330/14:00076289
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4244-7929-0
ISSN
UT WoS
000350044704041
Klíčová slova anglicky
ADHERENCE; DRUG
Štítky
Změněno: 27. 8. 2019 11:50, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
We have proposed a novel solution to a fundamental problem encountered in implementing non-ingestion based medical adherence monitoring systems, namely, how to reliably identify pill medication intake. We show how wireless wearable devices with tri-axial accelerometer can be used to detect and classify hand gestures of users during solid-phase medication intake. Two devices were worn on the wrists of each user. Users were asked to perform two activities in the way that is natural and most comfortable to them: (1) taking empty gelatin capsules with water, and (2) drinking water and wiping mouth. 25 users participated in this study. The signals obtained from the devices were filtered and the patterns were identified using dynamic time warping algorithm. Using hand gesture signals, we achieved 84.17 percent true positive rate and 13.33 percent false alarm rate, thus demonstrating that the hand gestures could be used to effectively identify pill taking activity.