2014
Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations
STADLBAUER, Petr, Lukáš TRANTÍREK, Thomas E. CHEATHAM III., Jaroslav KOČA, Jiří ŠPONER et. al.Základní údaje
Originální název
Triplex intermediates in folding of human telomeric quadruplexes probed by microsecond-scale molecular dynamics simulations
Autoři
STADLBAUER, Petr (203 Česká republika), Lukáš TRANTÍREK (203 Česká republika, domácí), Thomas E. CHEATHAM III. (840 Spojené státy), Jaroslav KOČA (203 Česká republika, domácí) a Jiří ŠPONER (203 Česká republika, garant, domácí)
Vydání
Biochimie, Paris, ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER, 2014, 0300-9084
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Francie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.963
Kód RIV
RIV/00216224:14740/14:00074073
Organizační jednotka
Středoevropský technologický institut
UT WoS
000343022400004
Klíčová slova anglicky
G-DNA folding; Molecular dynamics; Quadruplex; Telomere; Triplex
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 15. 7. 2015 09:13, Martina Prášilová
Anotace
V originále
We have carried out extended set of mu s-scale explicit solvent MD simulations of all possible G-triplexes which can participate in folding pathways of the human telomeric quadruplex. Our study accumulates almost 60 mu s of simulation data, which is by about three orders of magnitude larger sampling compared to the earlier simulations of human telomeric G-DNA triplexes. Starting structures were obtained from experimental quadruplex structures by deleting either the first or the last strand. The life-times of antiparallel triplexes with lateral and diagonal loops are at least on mu s-scale, which should be sufficient to contribute to the folding pathways. However, the triplex states may involve structures with various local deviations from the ideal triplexes, such as strand tilting and various alternative and incomplete triads. The simulations reveal easy rearrangements between lateral and diagonal loop triplex topologies. Propeller loops of antiparallel triplexes may to certain extent interfere with the G-triplexes but these structures are still viable candidates to participate in the folding. In contrast, all-parallel all-anti triplexes are very unstable and are unlikely to contribute to the folding. Although our simulations demonstrate that antiparallel G-triplexes, if folded, would have life-times sufficient to participate in the quadruplex folding, the results do not rule out the possibility that the G-triplexes are out-competed by other structures not included in our study. Among them, numerous possible misfolded structures containing guanine quartets can act as off-path intermediates with longer life-times than the triplexes. Besides analyzing the structural dynamics of a diverse set of G-DNA triplexes, we also provide a brief discussion of the limitations of the simulation methodology, which is necessary for proper understanding of the simulation data. (C) 2014 The Authors. Published by Elsevier Masson SAS.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
| ||
GA13-28310S, projekt VaV |
| ||
2535, interní kód MU |
| ||
322104, interní kód MU |
|