2014
Zero-reachability in probabilistic multi-counter automata
BRÁZDIL, Tomáš, Stefan KIEFER, Antonín KUČERA, Petr NOVOTNÝ, Joost-Pieter KATOEN et. al.Základní údaje
Originální název
Zero-reachability in probabilistic multi-counter automata
Autoři
BRÁZDIL, Tomáš (203 Česká republika, domácí), Stefan KIEFER (276 Německo), Antonín KUČERA (203 Česká republika, garant, domácí), Petr NOVOTNÝ (203 Česká republika, domácí) a Joost-Pieter KATOEN (528 Nizozemské království)
Vydání
New York, Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), od s. nestránkováno, 10 s. 2014
Nakladatel
ACM
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14330/14:00074099
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4503-2886-9
UT WoS
000693915100021
Klíčová slova anglicky
markov chains; petri nets; reachability; multicounter automata
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 11. 2014 14:20, doc. RNDr. Petr Novotný, Ph.D.
Anotace
V originále
We study the qualitative and quantitative zero-reachability problem in probabilistic multi-counter systems. We identify the undecidable variants of the problems, and then we concentrate on the remaining two cases. In the first case, when we are interested in the probability of all runs that visit zero in some counter, we show that the qualitative zero-reachability is decidable in time which is polynomial in the size of a given pMC and doubly exponential in the number of counters. Further, we show that the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 in time which is polynomial in log(epsilon), exponential in the size of a given pMC, and doubly exponential in the number of counters. In the second case, we are interested in the probability of all runs that visit zero in some counter different from the last counter. Here we show that the qualitative zero-reachability is decidable and SquareRootSum-hard, and the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 (these result applies to pMC satisfying a suitable technical condition that can be verified in polynomial time). The proof techniques invented in the second case allow to construct counterexamples for some classical results about ergodicity in stochastic Petri nets.
Návaznosti
GPP202/12/P612, projekt VaV |
| ||
MUNI/A/0765/2013, interní kód MU |
| ||
MUNI/A/0855/2013, interní kód MU |
|