2014
Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta
ZHANG, Zaiyong, Justin PORTER, Konstantinos TRIPSIANES a Oliver F. LANGEZákladní údaje
Originální název
Robust and highly accurate automatic NOESY assignment and structure determination with Rosetta
Autoři
ZHANG, Zaiyong (276 Německo), Justin PORTER (276 Německo), Konstantinos TRIPSIANES (300 Řecko, garant, domácí) a Oliver F. LANGE (276 Německo)
Vydání
Journal of Biomolecular NMR, Dordrecht, Springer Netherlands, 2014, 0925-2738
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.141
Kód RIV
RIV/00216224:14740/14:00077434
Organizační jednotka
Středoevropský technologický institut
UT WoS
000338316800001
Klíčová slova anglicky
Nuclear magnetic resonance; Automatic data analysis; Structure determination
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 10. 3. 2015 18:41, Martina Prášilová
Anotace
V originále
We have developed a novel and robust approach for automatic and unsupervised simultaneous nuclear Overhauser effect (NOE) assignment and structure determination within the CS-Rosetta framework. Starting from unassigned peak lists and chemical shift assignments, autoNOE-Rosetta determines NOE cross-peak assignments and generates structural models. The approach tolerates incomplete and raw NOE peak lists as well as incomplete or partially incorrect chemical shift assignments, and its performance has been tested on 50 protein targets ranging from 50 to 200 residues in size. We find a significantly improved performance compared to established programs, particularly for larger proteins and for NOE data obtained on perdeuterated protein samples. X-ray crystallographic structures allowed comparison of Rosetta and conventional, PDB-deposited, NMR models in 20 of 50 test cases. The unsupervised autoNOE-Rosetta models were often of significantly higher accuracy than the corresponding expert-supervised NMR models deposited in the PDB. We also tested the method with unrefined peak lists and found that performance was nearly as good as for refined peak lists. Finally, demonstrating our method's remarkable robustness against problematic input data, we provided correct models for an incorrect PDB-deposited NMR solution structure.