2015
Decision support framework for Parkinson's disease based on novel handwriting markers
DROTÁR, Peter, Jiří MEKYSKA, Irena REKTOROVÁ, Lucia MASÁROVÁ, Zdeněk SMÉKAL et. al.Základní údaje
Originální název
Decision support framework for Parkinson's disease based on novel handwriting markers
Autoři
DROTÁR, Peter (203 Česká republika), Jiří MEKYSKA (203 Česká republika), Irena REKTOROVÁ (203 Česká republika, garant, domácí), Lucia MASÁROVÁ (703 Slovensko, domácí), Zdeněk SMÉKAL (203 Česká republika) a Marcos FAUNDEZ-ZANUY (724 Španělsko)
Vydání
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, PISCATAWAY (USA), IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2015, 1534-4320
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30000 3. Medical and Health Sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.583
Kód RIV
RIV/00216224:14740/15:00082246
Organizační jednotka
Středoevropský technologický institut
UT WoS
000354467200019
Klíčová slova anglicky
Parkinson’s disease; decision support system; handwriting
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 12. 4. 2016 13:33, Mgr. Eva Špillingová
Anotace
V originále
Parkinson’s disease (PD) is a neurodegenerative disorder which impairs motor skills, speech, and other functions such as behavior, mood, and cognitive processes. One of the most typical clinical hallmarks of PD is handwriting deterioration, usually the first manifestation of PD. The aim of this study is twofold: (a) to find a subset of handwriting features suitable for identifying subjects with PD and (b) to build a predictive model to efficiently diagnose PD. We collected handwriting samples from 37 medicated PD patients and 38 age- and sex- matched controls. The handwriting samples were collected during seven tasks such as writing a syllable, word, or sentence. Every sample was used to extract the handwriting measures. In addition to conventional kinematic and spatio-temporal handwriting measures, we also computed novel handwriting measures based on entropy, signal energy, and empirical mode decomposition of the handwriting signals. The selected features were fed to the support vector machine classifier with radial Gaussian kernel for automated diagnosis. The accuracy of the classification of PD was as high as 88:13%, with the highest values of sensitivity and specificity equal to 89:47% and 91:89%, respectively. Handwriting may be a valuable marker as a diagnostic and screening tool.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
| |
NT13499, projekt VaV |
|