2014
Spectroscopic Properties of Benzene at the Air–Ice Interface: A Combined Experimental–Computational Approach
KANIA, Rafal Józef, Joseph K'ekuboni MALONGWE, Dana NACHTIGALLOVÁ, Ján KRAUSKO, Ivan GLADICH et. al.Základní údaje
Originální název
Spectroscopic Properties of Benzene at the Air–Ice Interface: A Combined Experimental–Computational Approach
Autoři
KANIA, Rafal Józef (616 Polsko, domácí), Joseph K'ekuboni MALONGWE (180 Konžská demokratická republika, domácí), Dana NACHTIGALLOVÁ (203 Česká republika), Ján KRAUSKO (703 Slovensko, domácí), Ivan GLADICH (203 Česká republika), Martina ROESELOVÁ (203 Česká republika), Dominik HEGER (203 Česká republika, domácí) a Petr KLÁN (203 Česká republika, garant, domácí)
Vydání
Journal of Physical Chemistry A, 2014, 1089-5639
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10401 Organic chemistry
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.693
Kód RIV
RIV/00216224:14310/14:00074347
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000341337800041
Klíčová slova anglicky
Ice; snow; benzene; spectroscopy; calculations
Změněno: 19. 2. 2015 13:30, prof. RNDr. Petr Klán, Ph.D.
Anotace
V originále
A combined experimental and computational approach was used to study the spectroscopic properties of benzene at the ice–air interface at 253 and 77 K in comparison with its spectroscopic behavior in aqueous solutions. Benzene-contaminated ice samples were prepared either by shock-freezing of benzene aqueous solutions or by benzene vapor-deposition on pure ice grains and examined using UV diffuse reflectance and emission spectroscopies. Neither the absorption nor excitation nor emission spectra provided unambiguous evidence of benzene associates on the ice surface even at a higher surface coverage. Only a small increase in the fluorescence intensity in the region above 290 nm found experimentally might be associated with formation of benzene excimers perturbed by the interaction with the ice surface as shown by ADC(2) excited-state calculations. The benzene associates were found by MD simulations and ground-state DFT calculations, although not in the arrangement that corresponds to the excimer structures. Our experimental results clearly demonstrated that the energy of the S0-S1 electronic transition of benzene is not markedly affected by the phase change or the microenvironment at the ice–air interface and its absorption is limited to the wavelengths below 268 nm. Neither benzene interactions with the water molecules of ice nor the formation of dimers and microcrystals at the air–ice interface thus causes any substantial bathochromic shift in its absorption spectrum. Such a critical evaluation of the photophysical properties of organic contaminants of snow and ice is essential for predictions and modeling of chemical processes occurring in polar regions.
Návaznosti
EE2.3.30.0037, projekt VaV |
| ||
GAP503/10/0947, projekt VaV |
| ||
LO1214, projekt VaV |
|