2015
Are Collaborative Filtering Methods Suitable for Student Performance Prediction?
BYDŽOVSKÁ, HanaZákladní údaje
Originální název
Are Collaborative Filtering Methods Suitable for Student Performance Prediction?
Autoři
BYDŽOVSKÁ, Hana (203 Česká republika, garant, domácí)
Vydání
Portugal, Progress in Artificial Intelligence - 17th Portuguese Conference on Artificial Inteligence - EPIA 2015, od s. 425-430, 6 s. 2015
Nakladatel
Springer International Publishing
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Portugalsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/15:00083048
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-23484-7
ISSN
UT WoS
000363570000042
Klíčová slova anglicky
Student Performance; Prediction; Collaborative Filtering Methods; Recommender System
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 2. 5. 2016 06:05, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Researchers have been focusing on prediction of students’ behavior for many years. Different systems take advantages of such revealed information and try to attract, motivate, and help students to improve their knowledge. Our goal is to predict student performance in particular courses at the beginning of the semester based on the student’s history. Our approach is based on the idea of representing students’ knowledge as a set of grades of their passed courses and finding the most similar students. Collaborative filtering methods were utilized for this task and the results were verified on the historical data originated from the Information System of Masaryk University. The results show that this approach is similarly effective as the commonly used machine learning methods like Support Vector Machines.