2015
TopKLists: a comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists
SCHIMEK, Michael G., Eva BUDINSKÁ, Karl G. KUGLER, Vendula ŠVENDOVÁ, Jie DING et. al.Základní údaje
Originální název
TopKLists: a comprehensive R package for statistical inference, stochastic aggregation, and visualization of multiple omics ranked lists
Autoři
SCHIMEK, Michael G. (40 Rakousko), Eva BUDINSKÁ (703 Slovensko, garant, domácí), Karl G. KUGLER (276 Německo), Vendula ŠVENDOVÁ (203 Česká republika), Jie DING (840 Spojené státy) a Shili LIN (840 Spojené státy)
Vydání
STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, BERLIN, WALTER DE GRUYTER GMBH, 2015, 2194-6302
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.265
Kód RIV
RIV/00216224:14110/15:00083345
Organizační jednotka
Lékařská fakulta
UT WoS
000355417300008
Klíčová slova anglicky
62G99; 65K10; 68N01; 65C60; 62F07
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 9. 7. 2015 14:21, Soňa Böhmová
Anotace
V originále
High-throughput sequencing techniques are increasingly affordable and produce massive amounts of data. Together with other high-throughput technologies, such as microarrays, there are an enormous amount of resources in databases. The collection of these valuable data has been routine for more than a decade. Despite different technologies, many experiments share the same goal. For instance, the aims of RNA-seq studies often coincide with those of differential gene expression experiments based on microarrays. As such, it would be logical to utilize all available data. However, there is a lack of biostatistical tools for the integration of results obtained from different technologies. Although diverse technological platforms produce different raw data, one commonality for experiments with the same goal is that all the outcomes can be transformed into a platform-independent data format - rankings - for the same set of items. Here we present the R package TopKLists, which allows for statistical inference on the lengths of informative (top-k) partial lists, for stochastic aggregation of full or partial lists, and for graphical exploration of the input and consolidated output. A graphical user interface has also been implemented for providing access to the underlying algorithms. To illustrate the applicability and usefulness of the package, we integrated microRNA data of non-small cell lung cancer across different measurement techniques and draw conclusions. The package can be obtained from CRAN under a LGPL-3 license.