2015
Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
JANOUŠOVÁ, Eva, Daniel SCHWARZ a Tomáš KAŠPÁREKZákladní údaje
Originální název
Combining various types of classifiers and features extracted from magnetic resonance imaging data in schizophrenia recognition
Autoři
JANOUŠOVÁ, Eva (203 Česká republika, garant, domácí), Daniel SCHWARZ (203 Česká republika, domácí) a Tomáš KAŠPÁREK (203 Česká republika, domácí)
Vydání
Psychiatry Research: Neuroimaging, CLARE, ELSEVIER IRELAND LTD, 2015, 0925-4927
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30000 3. Medical and Health Sciences
Stát vydavatele
Irsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 2.477
Kód RIV
RIV/00216224:14110/15:00087443
Organizační jednotka
Lékařská fakulta
UT WoS
000354552900006
Klíčová slova anglicky
Computational neuroanatomy; Classification; Intersubject principal component analysis (isPCA); Modified maximum uncertainty linear; discriminant analysis (mMLDA); Centroid method; Average linkage
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 9. 7. 2015 14:50, Soňa Böhmová
Anotace
V originále
We investigated a combination of three classification algorithms, namely the modified maximum uncertainty linear discriminant analysis (mMLDA), the centroid method, and the average linkage, with three types of features extracted from three-dimensional T1-weighted magnetic resonance (MR) brain images, specifically MR intensities, grey matter densities, and local deformations for distinguishing 49 first episode schizophrenia male patients from 49 healthy male subjects. The feature sets were reduced using intersubject principal component analysis before classification. By combining the classifiers, we were able to obtain slightly improved results when compared with single classifiers. The best classification performance (81.6% accuracy, 75.5% sensitivity, and 87.8% specificity) was significantly better than classification by chance. We also showed that classifiers based on features calculated using more computation-intensive image preprocessing perform better; mMLDA with classification boundary calculated as weighted mean discriminative scores of the groups had improved sensitivity but similar accuracy compared to the original MLDA; reducing a number of eigenvectors during data reduction did not always lead to higher classification accuracy, since noise as well as the signal important for classification were removed. Our findings provide important information for schizophrenia research and may improve accuracy of computer aided diagnostics of neuropsychiatric diseases.
Návaznosti
NT13359, projekt VaV |
|