2016
Assessing similarity models for human-motion retrieval applications
VALČÍK, Jakub, Jan SEDMIDUBSKÝ a Pavel ZEZULAZákladní údaje
Originální název
Assessing similarity models for human-motion retrieval applications
Autoři
VALČÍK, Jakub (203 Česká republika, domácí), Jan SEDMIDUBSKÝ (203 Česká republika, garant, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Computer Animation and Virtual Worlds, John Wiley & Sons Ltd, 2016, 1546-4261
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 0.424
Kód RIV
RIV/00216224:14330/16:00087724
Organizační jednotka
Fakulta informatiky
UT WoS
000385614100003
Klíčová slova anglicky
human-motion retrieval; similarity model; effectiveness evaluation; motion capture data; action recognition
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 4. 2019 07:36, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
The development of motion capturing devices poses new challenges in the exploitation of human-motion data for various application fields, such as computer animation, visual surveillance, sports or physical medicine. Recently, a number of approaches dealing with motion data have been proposed, suggesting characteristic motion features to be extracted and compared on the basis of similarity. Unfortunately, almost each approach defines its own set of motion features and comparison methods, thus it is hard to fairly decide which similarity model is the most suitable for a given kind of human-motion retrieval application. To cope with this problem, we propose the HumAn Motion Model EvaluatoR (HAMMER) which is a generic framework for assessing candidate similarity models with respect to the purpose of the target application. The application purpose is specified by a user in form of a representative sample of categorized motion data. Respecting such categorization, the similarity models are assessed from the effectiveness and efficiency points of view using a set of space-complexity, information-retrieval, and performance measures. The usability of the framework is demonstrated by case studies of three practical examples of retrieval applications focusing on recognition of actions, detection of similar events, and identification of subjects.
Návaznosti
GBP103/12/G084, projekt VaV |
|