2015
Unifying Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes
CHATTERJEE, Krishnendu, Zuzana KOMÁRKOVÁ a Jan KŘETÍNSKÝZákladní údaje
Originální název
Unifying Two Views on Multiple Mean-Payoff Objectives in Markov Decision Processes
Autoři
CHATTERJEE, Krishnendu (356 Indie), Zuzana KOMÁRKOVÁ (203 Česká republika, domácí) a Jan KŘETÍNSKÝ (203 Česká republika, garant, domácí)
Vydání
Los Alamitos, California, Thirtieth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), od s. 244-256, 13 s. 2015
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/15:00080917
Organizační jednotka
Fakulta informatiky
ISBN
978-1-4799-8875-4
ISSN
UT WoS
000380427100024
Klíčová slova anglicky
Markov decision process; mean payoff; optimization; probability
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 23. 10. 2017 12:46, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
We consider Markov decision processes (MDPs) with multiple limit-average (or mean-payoff) objectives. There exist two different views: (i)~the expectation semantics, where the goal is to optimize the expected mean-payoff objective, and (ii)~the satisfaction semantics, where the goal is to maximize the probability of runs such that the mean-payoff value stays above a given vector. We consider optimization with respect to both objectives at once, thus unifying the existing semantics. Precisely, the goal is to optimize the expectation while ensuring the satisfaction constraint. Our problem captures the notion of optimization with respect to strategies that are risk-averse (i.e., ensure certain probabilistic guarantee). Our main results are as follows: First, we present algorithms for the decision problems, which are always polynomial in the size of the MDP. We also show that an approximation of the Pareto curve can be computed in time polynomial in the size of the MDP, and the approximation factor, but exponential in the number of dimensions. Second, we present a complete characterization of the strategy complexity (in terms of memory bounds and randomization) required to solve our problem.
Návaznosti
GBP202/12/G061, projekt VaV |
|