D 2015

Counterexample Explanation by Learning Small Strategies in Markov Decision Processes

BRÁZDIL, Tomáš, Krishnendu CHATTERJEE, Martin CHMELÍK, Andreas FELLNER, Jan KŘETÍNSKÝ et. al.

Základní údaje

Originální název

Counterexample Explanation by Learning Small Strategies in Markov Decision Processes

Autoři

BRÁZDIL, Tomáš (203 Česká republika, domácí), Krishnendu CHATTERJEE (356 Indie), Martin CHMELÍK (203 Česká republika), Andreas FELLNER (40 Rakousko) a Jan KŘETÍNSKÝ (203 Česká republika, garant, domácí)

Vydání

Cham, Computer Aided Verification: 27th International Conference, CAV 2015, od s. 158-177, 20 s. 2015

Nakladatel

Springer

Další údaje

Jazyk

angličtina

Typ výsledku

Stať ve sborníku

Obor

10201 Computer sciences, information science, bioinformatics

Stát vydavatele

Německo

Utajení

není předmětem státního či obchodního tajemství

Forma vydání

tištěná verze "print"

Impakt faktor

Impact factor: 0.402 v roce 2005

Kód RIV

RIV/00216224:14330/15:00080918

Organizační jednotka

Fakulta informatiky

ISBN

978-3-319-21689-8

ISSN

UT WoS

000364182900010

Klíčová slova anglicky

stochastic systems; verification; machine learning; decision tree

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2016 14:21, RNDr. Pavel Šmerk, Ph.D.

Anotace

V originále

For deterministic systems, a counterexample to a property can simply be an error trace, whereas counterexamples in probabilistic systems are necessarily more complex. For instance, a set of erroneous traces with a sufficient cumulative probability mass can be used. Since these are too large objects to understand and manipulate, compact representations such as subchains have been considered. In the case of probabilistic systems with non-determinism, the situation is even more complex. While a subchain for a given strategy (or scheduler, resolving non-determinism) is a straightforward choice, we take a different approach. Instead, we focus on the strategy itself, and extract the most important decisions it makes, and present its succinct representation. The key tools we employ to achieve this are (1) introducing a concept of importance of a state w.r.t. the strategy, and (2) learning using decision trees. There are three main consequent advantages of our approach. Firstly, it exploits the quantitative information on states, stressing the more important decisions. Secondly, it leads to a greater variability and degree of freedom in representing the strategies. Thirdly, the representation uses a self-explanatory data structure. In summary, our approach produces more succinct and more explainable strategies, as opposed to e.g. binary decision diagrams. Finally, our experimental results show that we can extract several rules describing the strategy even for very large systems that do not fit in memory, and based on the rules explain the erroneous behaviour.

Návaznosti

GBP202/12/G061, projekt VaV
Název: Centrum excelence - Institut teoretické informatiky (CE-ITI) (Akronym: CE-ITI)
Investor: Grantová agentura ČR, Centrum excelence - Institut teoretické informatiky