2015
Towards Interactive Visualization of Time Series Data to Support Knowledge Discovery
GÉRYK, JanZákladní údaje
Originální název
Towards Interactive Visualization of Time Series Data to Support Knowledge Discovery
Autoři
GÉRYK, Jan (203 Česká republika, garant, domácí)
Vydání
Portugal, Progress in Artificial Intelligence - 17th Portuguese Conference on Artificial Inteligence - EPIA 2015, od s. 578-583, 6 s. 2015
Nakladatel
Springer International Publishing
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Portugalsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/15:00083876
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-23484-7
ISSN
UT WoS
000363570000057
Klíčová slova anglicky
animation;motion charts;visual analytics;academic analytics;experiment
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2016 14:48, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Higher education institutions have a significant interest in increasing the educational quality and effectiveness. A major challenge in modern education is the large amount of time-dependent data, which requires efficient tools and methods to provide efficient decision making. Methods like motion charts (MC) show changes over time by presenting animations in two-dimensional space and by changing element appearances. In this paper, we present a visual analytics tool which makes use of enhanced animated data visualization methods. The tool is primarily designed for exploratory analysis of academic analytics (AA) and offers several interactive visualization methods that enhance the MC design. AA is the business intelligence term used in academic settings and particularly facilitates creation of actionable intelligence to enhance learning and improve student retention. We evaluate the usefulness and the general applicability of the tool with a controlled experiment to assess the efficacy of described methods. To interpret the experiment results, we utilized one-way repeated measures ANOVA.