2016
HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users
SITOVÁ, Zdeňka, Jaroslav ŠEDĚNKA, Qing YANG, Ge PENG, Gang ZHOU et. al.Základní údaje
Originální název
HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users
Autoři
SITOVÁ, Zdeňka (203 Česká republika, domácí), Jaroslav ŠEDĚNKA (203 Česká republika, domácí), Qing YANG (156 Čína), Ge PENG (156 Čína), Gang ZHOU (156 Čína), Paolo GASTI (380 Itálie) a Kiran BALAGANI (356 Indie)
Vydání
IEEE Transactions on Information Forensics and Security, 2016, 1556-6013
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 4.332
Kód RIV
RIV/00216224:14310/16:00089158
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000372355200001
Klíčová slova anglicky
Behavioral biometrics; HMOG; biometric key generation; continuous authentication; energy evaluation
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2017 18:22, Ing. Andrea Mikešková
Anotace
V originále
We introduce hand movement, orientation, and grasp (HMOG), a set of behavioral features to continuously authenticate smartphone users. HMOG features unobtrusively capture subtle micro-movement and orientation dynamics resulting from how a user grasps, holds, and taps on the smartphone. We evaluated authentication and biometric key generation (BKG) performance of HMOG features on data collected from 100 subjects typing on a virtual keyboard. Data were collected under two conditions: 1) sitting and 2) walking. We achieved authentication equal error rates (EERs) as low as 7.16% (walking) and 10.05% (sitting) when we combined HMOG, tap, and keystroke features. We performed experiments to investigate why HMOG features perform well during walking. Our results suggest that this is due to the ability of HMOG features to capture distinctive body movements caused by walking, in addition to the hand-movement dynamics from taps. With BKG, we achieved the EERs of 15.1% using HMOG combined with taps. In comparison, BKG using tap, key hold, and swipe features had EERs between 25.7% and 34.2%. We also analyzed the energy consumption of HMOG feature extraction and computation. Our analysis shows that HMOG features extracted at a 16-Hz sensor sampling rate incurred a minor overhead of 7.9% without sacrificing authentication accuracy. Two points distinguish our work from current literature: 1) we present the results of a comprehensive evaluation of three types of features (HMOG, keystroke, and tap) and their combinations under the same experimental conditions and 2) we analyze the features from three perspectives (authentication, BKG, and energy consumption on smartphones).