2015
Influence of microbiome species in hard-to-heal wounds on disease severity and treatment duration
CHUDOBOVA, Dagmar, Kristyna CIHALOVA, Roman GURAN, Simona DOSTALOVA, Kristyna SMERKOVA et. al.Základní údaje
Originální název
Influence of microbiome species in hard-to-heal wounds on disease severity and treatment duration
Autoři
CHUDOBOVA, Dagmar (203 Česká republika), Kristyna CIHALOVA (203 Česká republika), Roman GURAN (203 Česká republika), Simona DOSTALOVA (203 Česká republika), Kristyna SMERKOVA (203 Česká republika), Radek VESELÝ (203 Česká republika, domácí), Jaromír GUMULEC (203 Česká republika, domácí), Michal MASAŘÍK (203 Česká republika, garant, domácí), Zbynek HEGER (203 Česká republika), Vojtech ADAM (203 Česká republika) a Rene KIZEK (203 Česká republika)
Vydání
Brazilian Journal of Infectious Diseases, Rio de Janeiro, Elsevier Brazil, 2015, 1413-8670
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30300 3.3 Health sciences
Stát vydavatele
Brazílie
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 1.412
Kód RIV
RIV/00216224:14110/15:00084692
Organizační jednotka
Lékařská fakulta
UT WoS
000365871300008
Klíčová slova anglicky
Bacterial strains; MALDI-TOF; Sequencing; Superficial wounds
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 29. 1. 2016 15:27, Ing. Mgr. Věra Pospíšilíková
Anotace
V originále
Background Infections, mostly those associated with colonization of wound by different pathogenic microorganisms, are one of the most serious health complications during a medical treatment. Therefore, this study is focused on the isolation, characterization, and identification of microorganisms prevalent in superficial wounds of patients (n = 50) presenting with bacterial infection. Methods After successful cultivation, bacteria were processed and analyzed. Initially the identification of the strains was performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on comparison of protein profiles (2–30 kDa) with database. Subsequently, bacterial strains from infected wounds were identified by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and sequencing of 16S rRNA gene 108. Results The most prevalent species was Staphylococcus aureus (70%), and out of those 11% turned out to be methicillin-resistant (mecA positive). Identified strains were compared with patients’ diagnoses using the method of artificial neuronal network to assess the association between severity of infection and wound microbiome species composition. Artificial neuronal network was subsequently used to predict patients’ prognosis (n = 9) with 85% success. Conclusions In all of 50 patients tested bacterial infections were identified. Based on the proposed artificial neuronal network we were able to predict the severity of the infection and length of the treatment.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
|