2016
Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin–spin interactions
VAVRINSKÁ, Andrea, Jiří ZELINKA, Jakub ŠEBERA, Vladimír SYCHROVSKÝ, Radovan FIALA et. al.Základní údaje
Originální název
Impact of nucleic acid self-alignment in a strong magnetic field on the interpretation of indirect spin–spin interactions
Autoři
VAVRINSKÁ, Andrea (703 Slovensko), Jiří ZELINKA (203 Česká republika, domácí), Jakub ŠEBERA (203 Česká republika), Vladimír SYCHROVSKÝ (203 Česká republika), Radovan FIALA (203 Česká republika, domácí), Rolf BOELENS (528 Nizozemské království), Vladimír SKLENÁŘ (203 Česká republika, domácí) a Lukáš TRANTÍREK (203 Česká republika, garant, domácí)
Vydání
Journal of biomolecular NMR, Dordrecht, Springer, 2016, 0925-2738
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10610 Biophysics
Stát vydavatele
Nizozemské království
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 2.410
Kód RIV
RIV/00216224:14740/16:00087769
Organizační jednotka
Středoevropský technologický institut
UT WoS
000372168000006
Klíčová slova anglicky
Nucleic acid; Self-alignment; Magnetic susceptibility; Scalar coupling; Dipolar coupling; Karplus equation
Změněno: 16. 3. 2017 12:17, Mgr. Eva Špillingová
Anotace
V originále
Heteronuclear and homonuclear direct (D) and indirect (J) spin-spin interactions are important sources of structural information about nucleic acids (NAs). The Hamiltonians for the D and J interactions have the same functional form; thus, the experimentally measured apparent spin-spin coupling constant corresponds to a sum of J and D. In biomolecular NMR studies, it is commonly presumed that the dipolar contributions to Js are effectively canceled due to random molecular tumbling. However, in strong magnetic fields, such as those employed for NMR analysis, the tumbling of NA fragments is anisotropic because the inherent magnetic susceptibility of NAs causes an interaction with the external magnetic field. This motional anisotropy is responsible for non-zero D contributions to Js. Here, we calculated the field-induced D contributions to 33 structurally relevant scalar coupling constants as a function of magnetic field strength, temperature and NA fragment size. We identified two classes of Js, namely 1JCH and 3JHH couplings, whose quantitative interpretation is notably biased by NA motional anisotropy. For these couplings, the magnetic field-induced dipolar contributions were found to exceed the typical experimental error in J-coupling determinations by a factor of two or more and to produce considerable over- or under-estimations of the J coupling-related torsion angles, especially at magnetic field strengths >12 T and for NA fragments longer than 12 bp. We show that if the non-zero D contributions to J are not properly accounted for, they might cause structural artifacts/bias in NA studies that use solution NMR spectroscopy.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
| ||
GA13-28310S, projekt VaV |
| ||
GA16-10504S, projekt VaV |
|