2015
Search-based image annotation: Extracting semantics from similar images
BUDÍKOVÁ, Petra, Michal BATKO, Jan BOTOREK a Pavel ZEZULAZákladní údaje
Originální název
Search-based image annotation: Extracting semantics from similar images
Autoři
BUDÍKOVÁ, Petra (203 Česká republika, garant, domácí), Michal BATKO (203 Česká republika, domácí), Jan BOTOREK (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Toulouse, France, Experimental IR Meets Multilinguality, Multimodality, and Interaction - 6th International Conference of the CLEF Association, CLEF 2015, od s. 327-339, 13 s. 2015
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/15:00081488
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-24026-8
ISSN
UT WoS
000364677800039
Klíčová slova anglicky
image annotation; similarity search; evaluation
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 4. 2016 15:34, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
The importance of automatic image annotation as a tool for handling large amounts of image data has been recognized for several decades. However, working tools have long been limited to narrow-domain problems with a few target classes for which precise models could be trained. With the advance of similarity searching, it now becomes possible to employ a different approach: extracting information from large amounts of noisy web data. However, several issues need to be resolved, including the acquisition of a suitable knowledge base, choosing a suitable visual content descriptor, implementation of effective and efficient similarity search engine, and extraction of semantics from similar images. In this paper, we address these challenges and present a working annotation system based on the search-based paradigm, which achieved good results in the 2014 ImageCLEF Scalable Concept Image Annotation challenge.
Návaznosti
GBP103/12/G084, projekt VaV |
|