2015
Towards an efficient data assimilation in physically-based medical simulations
PETERLÍK, Igor a Antonín KLÍMAZákladní údaje
Originální název
Towards an efficient data assimilation in physically-based medical simulations
Název česky
Směrem k efektivní datové asimilaci medicínských simulací založených na fyzice
Autoři
PETERLÍK, Igor (703 Slovensko, garant, domácí) a Antonín KLÍMA (203 Česká republika, domácí)
Vydání
Washington, D.C. , USA, Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2015, od s. 1412-1419, 8 s. 2015
Nakladatel
IEEE
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
elektronická verze "online"
Odkazy
Kód RIV
RIV/00216224:14610/15:00086693
Organizační jednotka
Ústav výpočetní techniky
ISBN
978-1-4673-6798-1
UT WoS
000377335600241
Klíčová slova anglicky
Data Assimilation; Kalman Filtering; Non-linear elasticity; Finite Element Method; Patient-specific Modeling
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 27. 8. 2019 11:58, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Computer simulation of soft tissues is rapidly be- coming an important aspect of medical training, pre-operative planning and intra-operative navigation. Whereas in medical training, generic models are usually employed, both planing and navigation require patient-specific modeling. However, creating a patient-specific model is a challenging task, as many of the mechanical parameters of the organ tissues are unknown. One way of addressing the issue is to extend the deterministic simulation by methods based on stochastic modeling. In this paper we focus on parameter estimation in models with large number of degrees of freedom based on a variant of Kalman filtering. The main contribution of the paper is a detailed description of an integration of two advanced concepts of numerical modeling: we employ a state-of-the-art method of data assimilation based on reduced-order Kalman filtering in order to perform parameter estimation of a finite-element model of non-linear elasticity used in medical simulations. In order to assess the method, we present a preliminary evaluation of the accuracy of the parameter estimation as well as the performance using synthetic data with added noise. We also evaluate the parallelized version of the prediction phase and finally we describe further perspectives which, as we believe, will bring the data assimilation of models with many parameters closer to the real-time processing.