2015
Similarity Searching for the Big Data Challenges and Research Objectives
ZEZULA, PavelZákladní údaje
Originální název
Similarity Searching for the Big Data Challenges and Research Objectives
Autoři
ZEZULA, Pavel (203 Česká republika, garant, domácí)
Vydání
MOBILE NETWORKS & APPLICATIONS, DORDRECHT, SPRINGER, 2015, 1383-469X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Čína
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.538
Kód RIV
RIV/00216224:14330/15:00087421
Organizační jednotka
Fakulta informatiky
UT WoS
000360003900010
EID Scopus
2-s2.0-84939572303
Klíčová slova anglicky
Big data; Scalability; Information retrieval; Similarity search; Findability; Data outsourcing; Data privacy; Information extraction
Změněno: 6. 5. 2016 06:02, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Analysis of contemporary Big Data collections require an effective and efficient content-based access to data which is usually unstructured. This first implies a necessity to uncover descriptive knowledge of complex and heterogeneous objects to make them findable. Second, multimodal search structures are needed to efficiently execute complex similarity queries possibly in outsourced environments while preserving privacy. After explaining the impacts of Big Data on similarity searching and summarizing the state of the art in the search technology, four specific research objectives to tackle the challenges are outlined and discussed. It is believed that effective and efficient processing of raw data for object findability and developing hybrid similarity search structures for multi-modal and privacy-preserving searching are necessary to achieve a scalable similarity search technology able to operate on Big Data.
Návaznosti
GBP103/12/G084, projekt VaV |
|