2015
Approximation and hardness results for the maximum edges in transitive closure problem
ADAMASZEK, Anna, G. BLIN a Alexandru POPAZákladní údaje
Originální název
Approximation and hardness results for the maximum edges in transitive closure problem
Autoři
ADAMASZEK, Anna (616 Polsko), G. BLIN (250 Francie) a Alexandru POPA (642 Rumunsko, domácí)
Vydání
Duluth; United States, 25th International Workshop on Combinatorial Algorithms, IWOCA 2014, LNCS 8986, od s. 13-23, 11 s. 2015
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/15:00087423
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-19314-4
ISSN
UT WoS
000365044500002
Klíčová slova anglicky
Algorithms; Bioinformatics; Combinatorial mathematics; Graph theory; Hardness
Změněno: 6. 5. 2016 06:14, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph G = (V,E) and a coloring of the vertices, remove a collection of edges from the graph such that each connected component is colorful (i.e., it does not contain two identically colored vertices) and the number of edges in the transitive closure of the graph is maximized. The problem is known to be APX-hard, and no approximation algorithms are known for it. We improve the hardness result by showing that the problem is NP-hard to approximate within a factor of |V |1/3-eps, for any constant eps > 0. Additionally, we show that the problem is APXhard already for the case when the number of vertex colors equals 3. We complement these results by showing the first approximation algorithm for the problem, with approximation factor [formula presented]