2016
A Few Notes on Lambda-Computation and TIL-Construction (21st Conference Applications of Logic in Philosophy and the Foundations of Mathematics, Szklarska Poręba, 10. 5. 2016)
PEZLAR, IvoZákladní údaje
Originální název
A Few Notes on Lambda-Computation and TIL-Construction (21st Conference Applications of Logic in Philosophy and the Foundations of Mathematics, Szklarska Poręba, 10. 5. 2016)
Autoři
PEZLAR, Ivo (203 Česká republika, garant, domácí)
Vydání
21st Conference Applications of Logic in Philosophy and the Foundations of Mathematics, Szklarska Poręba, 9th - 13th April 2016, 2016
Další údaje
Jazyk
angličtina
Typ výsledku
Prezentace na konferencích
Obor
60300 6.3 Philosophy, Ethics and Religion
Stát vydavatele
Polsko
Utajení
není předmětem státního či obchodního tajemství
Kód RIV
RIV/00216224:14210/16:00087923
Organizační jednotka
Filozofická fakulta
Klíčová slova anglicky
lambda calculus; computation; transparent intensional logic
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 3. 4. 2017 17:49, Mgr. Vendula Hromádková
Anotace
V originále
Lambda calculus (abbr. LC) originally developed by (Church, 1932) can be regarded as the most universal tool for expressing computations (Turing, 1937). Its fundamental computation rule, so called beta-reduction, is defined in terms of substitution and it embodies the idea of function application. Consequently, each application of beta-reduction rule can be regarded as a single computational step. There is, however, at least one formal system utilizing lambda calculus in which these correspondences (roughly put, computational step = beta-reduction = function application) do not hold. It is called transparent intensional logic (abbr. TIL) and it was developed by (Tichý, 1988). I will, however, focus on one of its later variants found in (Duží, Jespersen, Materna, 2010). In the present talk I will examine this deviation from standard lambda calculus and explore the outcomes it entails for the corresponding system.
Návaznosti
GA16-19395S, projekt VaV |
|