D 2016

Automatic Detection and Segmentation of Exosomes in Transmission Electron Microscopy

ŠTĚPKA, Karel, Martin MAŠKA, Jakub Jozef PÁLENIK, Vendula POSPÍCHALOVÁ, Anna KOTRBOVÁ et. al.

Basic information

Original name

Automatic Detection and Segmentation of Exosomes in Transmission Electron Microscopy

Authors

ŠTĚPKA, Karel (203 Czech Republic, belonging to the institution), Martin MAŠKA (203 Czech Republic, belonging to the institution), Jakub Jozef PÁLENIK (703 Slovakia, belonging to the institution), Vendula POSPÍCHALOVÁ (203 Czech Republic, belonging to the institution), Anna KOTRBOVÁ (203 Czech Republic), Ladislav ILKOVICS (203 Czech Republic, belonging to the institution), Dobromila KLEMOVÁ (203 Czech Republic, belonging to the institution), Aleš HAMPL (203 Czech Republic, belonging to the institution), Vítězslav BRYJA (203 Czech Republic, belonging to the institution) and Pavel MATULA (203 Czech Republic, belonging to the institution)

Edition

Cham, Switzerland, Computer Vision -- ECCV 2016 Workshops: Amsterdam, The Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part I, p. 318-325, 8 pp. 2016

Publisher

Springer International Publishing

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Switzerland

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/16:00091584

Organization unit

Faculty of Informatics

ISBN

978-3-319-46603-3

ISSN

Keywords in English

Exosome; Detection; Segmentation; Transmission electron microscopy; Image processing

Tags

Tags

International impact, Reviewed
Změněno: 7/4/2017 17:57, doc. RNDr. Martin Maška, Ph.D.

Abstract

V originále

We presented a morphological method for automatic detection and segmentation of exosomes in transmission electron microscopy images. The exosome segmentation was carried out using morphological seeded watershed on gradient magnitude image, with the seeds established by applying a series of hysteresis thresholdings, followed by morphological filtering and cluster splitting. We tested the method on a diverse image data set, yielding the detection performance of slightly over 80 %.

Links

MUNI/A/0945/2015, interní kód MU
Name: Rozsáhlé výpočetní systémy: modely, aplikace a verifikace V.
Investor: Masaryk University, Category A
MUNI/M/1050/2013, interní kód MU
Name: Automatizovaná analýza elektronmikroskopických snímků pro použití v biologii a medicíně (Acronym: Analýza TEM snímků)
Investor: Masaryk University, INTERDISCIPLINARY - Interdisciplinary research projects