2016
Generalized Nonlinear Yule Models
LÁNSKÝ, Petr, Federico POLITO a Laura SACERDOTEZákladní údaje
Originální název
Generalized Nonlinear Yule Models
Název česky
Zobecnene nelinearni Yulovy modely
Autoři
LÁNSKÝ, Petr (203 Česká republika, garant, domácí), Federico POLITO (380 Itálie) a Laura SACERDOTE (380 Itálie)
Vydání
JOURNAL OF STATISTICAL PHYSICS, 2016, 0022-4715
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.349
Kód RIV
RIV/00216224:14310/16:00088377
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000386681800008
Klíčová slova anglicky
FRACTIONAL POISSON-PROCESS; ORDER STATISTIC PROPERTY; POINT-PROCESSES; GROWING NETWORKS; BIRTH PROCESSES
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 6. 4. 2017 16:49, Ing. Andrea Mikešková
Anotace
V originále
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Návaznosti
GA15-06991S, projekt VaV |
|