2016
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
MAREČEK, Radek, Martin LAMOŠ, Michal MIKL, Marek BARTOŇ, Jiří FAJKUS et. al.Základní údaje
Originální název
What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study
Autoři
MAREČEK, Radek (203 Česká republika, garant, domácí), Martin LAMOŠ (203 Česká republika, domácí), Michal MIKL (203 Česká republika, domácí), Marek BARTOŇ (203 Česká republika, domácí), Jiří FAJKUS (203 Česká republika, domácí), Ivan REKTOR (203 Česká republika, domácí) a Milan BRÁZDIL (203 Česká republika, domácí)
Vydání
JOURNAL OF NEURAL ENGINEERING, BRISTOL, IOP PUBLISHING LTD, 2016, 1741-2560
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.465
Kód RIV
RIV/00216224:14740/16:00094577
Organizační jednotka
Středoevropský technologický institut
UT WoS
000380668900029
Klíčová slova anglicky
multimodal neuroimaging; brain rhythms; blind decomposition; large scale brain networks
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 28. 3. 2018 16:40, Mgr. Pavla Foltynová, Ph.D.
Anotace
V originále
Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.
Návaznosti
ED1.1.00/02.0068, projekt VaV |
| ||
GA14-33143S, projekt VaV |
|