2016
Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research
JANOUŠOVÁ, Eva, Giovanni MONTANA, Tomáš KAŠPÁREK a Daniel SCHWARZZákladní údaje
Originální název
Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research
Autoři
JANOUŠOVÁ, Eva (203 Česká republika, garant, domácí), Giovanni MONTANA (826 Velká Británie a Severní Irsko), Tomáš KAŠPÁREK (203 Česká republika, domácí) a Daniel SCHWARZ (203 Česká republika, domácí)
Vydání
Frontiers in Neuroscience, Lausanne, Frontiers Media S.A. 2016, 1662-453X
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
Biotechnologie a bionika
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.566
Kód RIV
RIV/00216224:14110/16:00088925
Organizační jednotka
Lékařská fakulta
UT WoS
000381850500001
Klíčová slova anglicky
computational neuroanatomy; pattern recognition; classification; penalized linear discriminant analysis; support vector machines; cross-validation; magnetic resonance imaging; schizophrenia
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 14. 12. 2016 10:10, Ing. Mgr. Věra Pospíšilíková
Anotace
V originále
We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies.
Návaznosti
NT13359, projekt VaV |
|