2016
Policy Learning for Time-Bounded Reachability in Continuous-Time Markov Decision Processes via Doubly-Stochastic Gradient Ascent
BRÁZDIL, Tomáš, Ezio BARTOCCI, Dimitrios MILIOS, Guido SANGUINETTI, Luca BORTOLUSSI et. al.Základní údaje
Originální název
Policy Learning for Time-Bounded Reachability in Continuous-Time Markov Decision Processes via Doubly-Stochastic Gradient Ascent
Autoři
BRÁZDIL, Tomáš (203 Česká republika, garant, domácí), Ezio BARTOCCI (380 Itálie), Dimitrios MILIOS (300 Řecko), Guido SANGUINETTI (380 Itálie) a Luca BORTOLUSSI (380 Itálie)
Vydání
Quebec City, Proceedings of QEST 2016, od s. 244-259, 16 s. 2016
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Kanada
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/16:00088513
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-43424-7
ISSN
UT WoS
000389063800017
Klíčová slova anglicky
continuous-time Markov decision processes; reachability; gradient descent
Štítky
Změněno: 13. 5. 2020 19:26, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Continuous-time Markov decision processes are an important class of models in a wide range of applications, ranging from cyber-physical systems to synthetic biology. A central problem is how to devise a policy to control the system in order to maximise the probability of satisfying a set of temporal logic specifications. Here we present a novel approach based on statistical model checking and an unbiased estimation of a functional gradient in the space of possible policies. The statistical approach has several advantages over conventional approaches based on uniformisation, as it can also be applied when the model is replaced by a black box, and does not suffer from state-space explosion. The use of a stochastic gradient to guide our search considerably improves the efficiency of learning policies. We demonstrate the method on a proof-of-principle non-linear population model, showing strong performance in a non-trivial task.
Návaznosti
GA15-17564S, projekt VaV |
|