2016
Engineering a de Novo Transport Tunnel
BREZOVSKÝ, Jan, Petra BABKOVÁ, Oksana DEGTJARIK, Andrea FOŘTOVÁ, Artur Wiktor GÓRA et. al.Základní údaje
Originální název
Engineering a de Novo Transport Tunnel
Autoři
BREZOVSKÝ, Jan (203 Česká republika, domácí), Petra BABKOVÁ (203 Česká republika, domácí), Oksana DEGTJARIK (112 Bělorusko), Andrea FOŘTOVÁ (203 Česká republika, domácí), Artur Wiktor GÓRA (616 Polsko, domácí), L. IERMAK (804 Ukrajina), Petra ŘEZÁČOVÁ (203 Česká republika), Pavel DVOŘÁK (203 Česká republika, domácí), Ivana KUTÁ-SMATANOVÁ (203 Česká republika), Zbyněk PROKOP (203 Česká republika, domácí), Radka CHALOUPKOVÁ (203 Česká republika, domácí) a Jiří DAMBORSKÝ (203 Česká republika, garant, domácí)
Vydání
ACS Catalysis, WASHINGTON, AMER CHEMICAL SOC, 2016, 2155-5435
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 10.614
Kód RIV
RIV/00216224:14310/16:00088545
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000387306100036
Klíčová slova anglicky
transport tunnel; protein engineering; protein design; activity; specificity; substrate inhibition; stability; substrate binding; product release; water dynamics
Změněno: 5. 4. 2017 13:35, Ing. Andrea Mikešková
Anotace
V originále
Transport of ligands between buried active sites and bulk solvent is a key step in the catalytic cycle of many enzymes. The absence of evolutionary optimized transport tunnels is an important barrier limiting the efficiency of biocatalysts prepared by computational design. Creating a structurally defined and functional “hole” into the protein represents an engineering challenge. Here we describe the computational design and directed evolution of a de novo transport tunnel in haloalkane dehalogenase. Mutants with a blocked native tunnel and newly opened auxiliary tunnel in a distinct part of the structure showed dramatically modified properties. The mutants with blocked tunnels acquired specificity never observed with native family members: up to 32 times increased substrate inhibition and 17 times reduced catalytic rates. Opening of the auxiliary tunnel resulted in specificity and substrate inhibition similar to those of the native enzyme and the most proficient haloalkane dehalogenase reported to date (kcat = 57 s–1 with 1,2-dibromoethane at 37 °C and pH 8.6). Crystallographic analysis and molecular dynamics simulations confirmed the successful introduction of a structurally defined and functional transport tunnel. Our study demonstrates that, whereas we can open the transport tunnels with reasonable proficiency, we cannot accurately predict the effects of such change on the catalytic properties. We propose that one way to increase efficiency of an enzyme is the direct its substrates and products into spatially distinct tunnels. The results clearly show the benefits of enzymes with de novo transport tunnels, and we anticipate that this engineering strategy will facilitate the creation of a wide range of useful biocatalysts.
Návaznosti
GAP207/12/0775, projekt VaV |
| ||
GAP503/12/0572, projekt VaV |
| ||
GA16-06096S, projekt VaV |
| ||
LH14027, projekt VaV |
| ||
LM2011028, projekt VaV |
| ||
LO1214, projekt VaV |
| ||
MUNI/M/1888/2014, interní kód MU |
|