FONTES, Joao Pedro, Pavel DOBEŠ, Pavel HYRŠL, Duarte Nuno TOUBARRO TIAGO a M.L. OLIVEIRA. Study of TEP3 gene in Drosophila melanogaster and its immune response to entomopathogenic nematodes. In Zoologické dny Brno 2017. 2017. ISBN 978-80-87189-21-4.
Další formáty:   BibTeX LaTeX RIS
Základní údaje
Originální název Study of TEP3 gene in Drosophila melanogaster and its immune response to entomopathogenic nematodes
Název česky Study of TEP3 gene in Drosophila melanogaster and its immune response to entomopathogenic nematodes
Autoři FONTES, Joao Pedro, Pavel DOBEŠ, Pavel HYRŠL, Duarte Nuno TOUBARRO TIAGO a M.L. OLIVEIRA.
Vydání Zoologické dny Brno 2017, 2017.
Další údaje
Originální jazyk angličtina
Typ výsledku Konferenční abstrakt
Obor 30102 Immunology
Stát vydavatele Česká republika
Utajení není předmětem státního či obchodního tajemství
Organizační jednotka Přírodovědecká fakulta
ISBN 978-80-87189-21-4
Klíčová slova česky Drosophila melanogaster; TEP3; imunita; entomopatogenní hlístice
Klíčová slova anglicky Drosophila melanogaster; TEP3; immunity; entomopathogenic nematode
Příznaky Mezinárodní význam
Změnil Změnil: Mgr. Pavel Dobeš, Ph.D., učo 150960. Změněno: 12. 2. 2017 00:36.
Anotace
Entomopathogenic nematodes are insect parasites that form a symbiotic relationship with Gram negative bacteria and together they seek suitable hosts. There is still a lack of knowledge about the biological interactions between nematodal parasite and insect host, for instance we still do not know which molecules are responsible for the host immune response to nematode infection. To better understand these defense mechanisms, the common fruit fly, Drosophila melanogaster, is successfully used as study model since it is an excellent genetic tool. It can help us in understanding the molecular mechanisms of immune response and identification of key genes as well as their function. It has been proposed that thioester-containing proteins (TEPs) can play an important role in pathogen recognition, but their exact role in immune response is still unclear. In previous studies it has been shown that Drosophila TEP3 mutants are more susceptible to nematode infections. In another study, TEP4 mutants infected with Photorhabdus bacteria demonstrated higher levels of melanization and phenoloxidase activity as well as increased production of antimicrobial peptides. The goal of our work is to achieve a better understanding of TEPs and their role. In particular, we are interested at the TEP3 function in the defense against nematodes which we study by testing the susceptibility of Drosophila against symbiotic and axenic nematodes of selected species in experimental infections. We observed clear difference in pathogenic effect not only among different species of nematodes, but also among different isolates of one species. Immunity of TEP3 flies was further evaluated by determination of phenoloxidase and antimicrobial activities that differ from wild-type flies in case of TEP4. These tests could provide us with a better insight to the role of TEP3 gene and its product in immune system of the Drosophila and its reactions to pathogens. This project was supported by grant GACR 17-03253S.
Anotace česky
Entomopathogenic nematodes are insect parasites that form a symbiotic relationship with Gram negative bacteria and together they seek suitable hosts. There is still a lack of knowledge about the biological interactions between nematodal parasite and insect host, for instance we still do not know which molecules are responsible for the host immune response to nematode infection. To better understand these defense mechanisms, the common fruit fly, Drosophila melanogaster, is successfully used as study model since it is an excellent genetic tool. It can help us in understanding the molecular mechanisms of immune response and identification of key genes as well as their function. It has been proposed that thioester-containing proteins (TEPs) can play an important role in pathogen recognition, but their exact role in immune response is still unclear. In previous studies it has been shown that Drosophila TEP3 mutants are more susceptible to nematode infections. In another study, TEP4 mutants infected with Photorhabdus bacteria demonstrated higher levels of melanization and phenoloxidase activity as well as increased production of antimicrobial peptides. The goal of our work is to achieve a better understanding of TEPs and their role. In particular, we are interested at the TEP3 function in the defense against nematodes which we study by testing the susceptibility of Drosophila against symbiotic and axenic nematodes of selected species in experimental infections. We observed clear difference in pathogenic effect not only among different species of nematodes, but also among different isolates of one species. Immunity of TEP3 flies was further evaluated by determination of phenoloxidase and antimicrobial activities that differ from wild-type flies in case of TEP4. These tests could provide us with a better insight to the role of TEP3 gene and its product in immune system of the Drosophila and its reactions to pathogens. This project was supported by grant GACR 17-03253S.
Návaznosti
GA17-03253S, projekt VaVNázev: Hormonální kontrola hmyzího obranného systému
Investor: Grantová agentura ČR, Hormonální kontrola hmyzího obranného systému
VytisknoutZobrazeno: 27. 4. 2024 02:20