2016
Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host
LEONTOVYČ, Roman, D Neil YOUNG, Pasi KORHONEN, S Hall HALL, Patrick TAN et. al.Základní údaje
Originální název
Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host
Autoři
LEONTOVYČ, Roman (203 Česká republika), D Neil YOUNG (36 Austrálie), Pasi KORHONEN (36 Austrálie), S Hall HALL (36 Austrálie), Patrick TAN (702 Singapur), Libor MIKEŠ (203 Česká republika), Martin KAŠNÝ (203 Česká republika, garant, domácí), Petr HORÁK (203 Česká republika) a B Robin GASSER (36 Austrálie)
Vydání
PLoS neglected tropical diseases, San Francisco, Public Library of Science, 2016, 1935-2735
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10600 1.6 Biological sciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 3.834
Kód RIV
RIV/00216224:14310/16:00093535
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000372567300026
Klíčová slova anglicky
Trichobilharzia regenti; neuropathogen; transcriptome
Změněno: 7. 3. 2018 10:35, Mgr. Lucie Jarošová, DiS.
Anotace
V originále
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.