J 2016

Bipartite Graphs for Visualization Analysis of Microbiome Data

SEDLÁŘ, Karel, Petra VÍDEŇSKÁ, Helena SKUTKOVA, Ivan RYCHLIK, Ivo PROVAZNIK et. al.

Základní údaje

Originální název

Bipartite Graphs for Visualization Analysis of Microbiome Data

Autoři

SEDLÁŘ, Karel (203 Česká republika), Petra VÍDEŇSKÁ (203 Česká republika, garant, domácí), Helena SKUTKOVA (203 Česká republika), Ivan RYCHLIK (203 Česká republika) a Ivo PROVAZNIK (203 Česká republika)

Vydání

EVOLUTIONARY BIOINFORMATICS, AUCKLAND, LIBERTAS ACAD, 2016, 1176-9343

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

Biotechnologie a bionika

Stát vydavatele

Nový Zéland

Utajení

není předmětem státního či obchodního tajemství

Odkazy

Impakt faktor

Impact factor: 1.500

Kód RIV

RIV/00216224:14310/16:00093546

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000382989300003

Klíčová slova anglicky

metagenomics; OTU table; 16S rRNA; bipartite graph; visualization analysis; graph modularity

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 30. 3. 2017 13:40, Ing. Andrea Mikešková

Anotace

V originále

Visualization analysis plays an important role in metagenomics research. Proper and clear visualization can help researchers get their first insights into data and by selecting different features, also revealing and highlighting hidden relationships and drawing conclusions. To prevent the resulting presentations from becoming chaotic, visualization techniques have to properly tackle the high dimensionality of microbiome data. Although a number of different methods based on dimensionality reduction, correlations, Venn diagrams, and network representations have already been published, there is still room for further improvement, especially in the techniques that allow visual comparison of several environments or developmental stages in one environment. In this article, we represent microbiome data by bipartite graphs, where one partition stands for taxa and the other stands for samples. We demonstrated that community detection is independent of taxonomical level. Moreover, focusing on higher taxonomical levels and the appropriate merging of samples greatly helps improving graph organization and makes our presentations clearer than other graph and network visualizations. Capturing labels in the vertices also brings the possibility of clearly comparing two or more microbial communities by showing their common and unique parts.