J 2016

EXPERIMENTAL STUDY OF ANISOTROPY OF QUARTZ DISSOLUTION AND ITS ROLE IN FLUID MIGRATION IN ROCKS

BENEDOVÁ, Šárka a Jaromír LEICHMANN

Základní údaje

Originální název

EXPERIMENTAL STUDY OF ANISOTROPY OF QUARTZ DISSOLUTION AND ITS ROLE IN FLUID MIGRATION IN ROCKS

Autoři

BENEDOVÁ, Šárka (203 Česká republika, domácí) a Jaromír LEICHMANN (203 Česká republika, garant, domácí)

Vydání

Acta Geodynamica et Geomaterialia, Praha, Academy of Science of the Czech Republic, 2016, 1214-9705

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10500 1.5. Earth and related environmental sciences

Stát vydavatele

Česká republika

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.699

Kód RIV

RIV/00216224:14310/16:00093876

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000377623200008

Klíčová slova česky

Rozpouštění křemene, krystalové plochy, mechanické defekty, metasomatoza, alterace

Klíčová slova anglicky

Quartz dissolution; Crystal faces; Mechanical defects; Metasomatism; Alteration

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 5. 4. 2017 18:35, Ing. Andrea Mikešková

Anotace

V originále

Quartz dissolution in hydrothermal-metasomatic processes is common feature in magmatic and metamorphic quartz rich rocks. This experimental work aims to compare the dissolution of individual quartz faces and to clarify the role of mechanical defects in quartz grain dissolution. Two types of experiments were made to define the dissolution anisotropy: hydrothermal experiments (quartz-distilled water) and chemical dissolution (quartz - 40 % hydrofluoric acid). Hydrothermal experiments using various types of quartz samples as well as chemical dissolution of quartz faces show that quartz dissolution is an anisotropic process. The solubility of rhombs is higher than that of prism faces. At lower temperatures the separated etch pits develop and with increasing temperature the etch pits start to link and the continuous striations (prisms) or overlapping arrows (rhombs) are observed. Such a surface structure may facilitate fluid migration through a solid rock. An experiment using a mechanically disrupted surface of the quartz crystal shows the decisive role of this defect on the dissolution. Fluid migration through rocks can then be strongly influenced for instance by brittle deformation, to which quartz with no cleavage is easily susceptible. Such defects additionally enhance fluid movement through rocks, which plays a decisive role during hydrothermal-metasomatic quartz dissolution.