2017
Cross-correlation spectroscopy study of the Transient Spark discharge in atmospheric pressure air
JANDA, Mario, Tomáš HODER, Abdollah SARANI, Ronny BRANDENBURG, Zdenko MACHALA et. al.Základní údaje
Originální název
Cross-correlation spectroscopy study of the Transient Spark discharge in atmospheric pressure air
Autoři
JANDA, Mario (703 Slovensko), Tomáš HODER (203 Česká republika, garant, domácí), Abdollah SARANI (276 Německo), Ronny BRANDENBURG (276 Německo) a Zdenko MACHALA (703 Slovensko)
Vydání
Plasma Sources Science and Technology, Bristol, IOP PUBLISHING LTD, 2017, 0963-0252
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10305 Fluids and plasma physics
Stát vydavatele
Velká Británie a Severní Irsko
Utajení
není předmětem státního či obchodního tajemství
Odkazy
Impakt faktor
Impact factor: 3.939
Kód RIV
RIV/00216224:14310/17:00094682
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000398283900004
Klíčová slova anglicky
cross-correlation spectroscopy; transient spark; streamer-to-spark breakdown mechanism; atmospheric air discharge
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 30. 3. 2018 22:49, Ing. Nicole Zrilić
Anotace
V originále
A streamer-to-spark transition in a self-pulsing transient spark (TS) discharge of positive polarity in air was investigated using cross-correlation spectroscopy. The entire temporal evolution of the TS was recorded for several spectral bands and lines: the second positive system of N2 (337.1 nm), the first negative system of N2+ (391.4 nm), and atomic oxygen (777.1 nm). The results enable the visualization of the different phases of discharge development including the primary streamer, the secondary streamer, and the transition to the spark. The spatio-temporal distribution of the reduced electric field strength during the primary streamer phase of the TS was determined and discussed. The transition from the streamer to the spark proceeds very fast within about 10 ns for the TS with a current pulse repetition rate in the range 8-10 kHz. This is attributed to memory effects, leading to a low net electron attachment rate and faster propagation of the secondary streamer. Gas heating, accumulation of species such as oxygen atoms from the previous TS pulses, as well as generation of charged particles by stepwise ionization seem to play important roles contributing to this fast streamer-to-spark transition.
Návaznosti
ED2.1.00/03.0086, projekt VaV |
| ||
GA15-04023S, projekt VaV |
| ||
LO1411, projekt VaV |
|