2016
New extension phenomena for solutions of tangential Cauchy-Riemann equations
KOSSOVSKIY, Ilya a B. LAMELZákladní údaje
Originální název
New extension phenomena for solutions of tangential Cauchy-Riemann equations
Autoři
KOSSOVSKIY, Ilya (643 Rusko, domácí) a B. LAMEL (620 Portugalsko)
Vydání
Communications in Partial Differential Equations, Philadelphia, PA, USA, Taylor & Francis, 2016, 0360-5302
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10101 Pure mathematics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 1.608
Kód RIV
RIV/00216224:14310/16:00094221
Organizační jednotka
Přírodovědecká fakulta
UT WoS
000378746100004
Klíčová slova anglicky
holomorphic maps; CR-functions
Změněno: 11. 5. 2017 18:50, Ing. Andrea Mikešková
Anotace
V originále
In our recent work, we showed that smooth CR-diffeomorphisms of real-analytic Levi-nonflat hypersurfaces in C^2 are not analytic in general. This result raised again the question on the nature of CR-maps of real-analytic hypersurfaces. In this paper, we give a complete picture of what CR-maps actually are. First, we discover an analytic continuation phenomenon for CR-dieomorphisms which we call the sectorial analyticity property. It appears to be the optimal regularity property for CR-dieomorphisms in general. We emphasize that such type of extension never appeared previously in the literature. Second, we introduce the class of Fuchsian type hypersurfaces and prove that (innitesimal generators of) CR-automorphisms of a Fuchsian type hypersurface are still analytic. In particular, this solves a problem formulated earlier by Shafikov and the first author. Finally, we prove a regularity result for formal CR-automorphisms of Fuchsian type hypersursufaces.