J 2017

Pure spinors, intrinsic torsion and curvature in odd dimensions

TAGHAVI-CHABERT, Arman

Základní údaje

Originální název

Pure spinors, intrinsic torsion and curvature in odd dimensions

Autoři

TAGHAVI-CHABERT, Arman (250 Francie, garant, domácí)

Vydání

Differential Geometry and its Applications, Amsterdam, Elsevier Science, 2017, 0926-2245

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.760

Kód RIV

RIV/00216224:14310/17:00094690

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000399856700011

Klíčová slova anglicky

Complex Riemannian geometry; Pure spinors; Distributions; Intrinsic torsion; Curvature prescription; Spinorial equations

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 11. 4. 2018 09:36, Ing. Nicole Zrilić

Anotace

V originále

We study the geometric properties of a $(2m + 1)$-dimensional complex manifold $M$ admitting a holomorphic reduction of the frame bundle to the structure group $P \subset Spin(2m + 1, C)$, the stabiliser of the line spanned by a pure spinor at a point. Geometrically, $M$ is endowed with a holomorphic metric $g$, a holomorphic volume form, a spin structure compatible with $g$, and a holomorphic pure spinor field $\xi$ up to scale. The defining property of $\xi$ is that it determines an almost null structure, i.e. an $m$-plane distribution $N_\xi$ along which $g$ is totally degenerate. We develop a spinor calculus, by means of which we encode the geometric properties of $N_\xi$ and of its rank-$(m + 1)$ orthogonal complement $N_\xi^\perp$ corresponding to the algebraic properties of the intrinsic torsion of the $P$-structure. This is the failure of the Levi-Civita connection $\nabla$ of $g$ to be compatible with the $P$ -structure. In a similar way, we examine the algebraic properties of the curvature of $\nabla$. Applications to spinorial differential equations are given. Notably, we relate the integrability properties of $N_\xi$ and $N_\xi^\perp$ to the existence of solutions of odd- dimensional versions of the zero-rest-mass field equation. We give necessary and sufficient conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable. Finally, we conjecture a Goldberg–Sachs-type theorem on the existence of a certain class of almost null structures when $(M, g)$ has prescribed curvature. We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

Návaznosti

GP14-27885P, projekt VaV
Název: Skoro izotropní struktury v pseudo-riemannovské geometrii
Investor: Grantová agentura ČR, Skoro izotropní struktury v pseudo-riemannovské geometrii