J 2016

Pure spinors, intrinsic torsion and curvature in even dimensions

TAGHAVI-CHABERT, Arman

Základní údaje

Originální název

Pure spinors, intrinsic torsion and curvature in even dimensions

Autoři

TAGHAVI-CHABERT, Arman (250 Francie, garant, domácí)

Vydání

Differential Geometry and its Applications, Elsevier Science, 2016, 0926-2245

Další údaje

Jazyk

angličtina

Typ výsledku

Článek v odborném periodiku

Obor

10101 Pure mathematics

Stát vydavatele

Nizozemské království

Utajení

není předmětem státního či obchodního tajemství

Impakt faktor

Impact factor: 0.497

Kód RIV

RIV/00216224:14310/16:00088801

Organizační jednotka

Přírodovědecká fakulta

UT WoS

000374599400010

Klíčová slova anglicky

Complex Riemannian geometry; Pure spinors Distributions; Intrinsic torsion; Curvature prescription; Spinorial equations

Štítky

Příznaky

Mezinárodní význam, Recenzováno
Změněno: 10. 4. 2017 21:20, Ing. Andrea Mikešková

Anotace

V originále

We study the geometric properties of a $2m$-dimensional complex manifold $M$ admitting a holomorphic reduction of the frame bundle to the structure group $P \subset Spin(2m, C)$, the stabiliser of the line spanned by a pure spinor at a point. Geometrically, $M$ is endowed with a holomorphic metric $g$, a holomorphic volume form, a spin structure compatible with $g$, and a holomorphic pure spinor field $\xi$ up to scale. The defining property of $\xi$ is that it determines an almost null structure, i.e. an $m$-plane distribution $N_\xi$ along which $g$ is totally degenerate. We develop a spinor calculus, by means of which we encode the geometric properties of $N_\xi$ corresponding to the algebraic properties of the intrinsic torsion of the $P$-structure. This is the failure of the Levi-Civita connection $\nabla$ of $g$ to be compatible with the $P$ -structure. In a similar way, we examine the algebraic properties of the curvature of $\nabla$. Applications to spinorial differential equations are given. In particular, we give necessary and sufficient conditions for the almost null structure associated to a pure conformal Killing spinor to be integrable. We also conjecture a Goldberg–Sachs-type theorem on the existence of a certain class of almost null structures when $(M, g)$ has prescribed curvature. We discuss applications of this work to the study of real pseudo-Riemannian manifolds.

Návaznosti

GP14-27885P, projekt VaV
Název: Skoro izotropní struktury v pseudo-riemannovské geometrii
Investor: Grantová agentura ČR, Skoro izotropní struktury v pseudo-riemannovské geometrii