2017
Guildlines of Data Quality Issues for Data Integration in the Context of the TPC-DI Benchmark
YANG, Qishan; Mouzhi GE a Markus HELFERTZákladní údaje
Originální název
Guildlines of Data Quality Issues for Data Integration in the Context of the TPC-DI Benchmark
Autoři
YANG, Qishan (156 Čína); Mouzhi GE (156 Čína, garant, domácí) a Markus HELFERT (276 Německo)
Vydání
Porto, Portugal, Proceedings of the 19th International Conference on Enterprise Information Systems, od s. 135-144, 10 s. 2017
Nakladatel
SciTePress
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/17:00096406
Organizační jednotka
Fakulta informatiky
ISBN
978-989-758-247-9
UT WoS
000697605900013
EID Scopus
2-s2.0-85023163188
Klíčová slova anglicky
Data integration; Data quality; ETL; TPC-DI benchmark
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 26. 2. 2018 13:03, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
Nowadays, many business intelligence or master data management initiatives are based on regular data integration, since data integration intends to extract and combine a variety of data sources, it is thus considered as a prerequisite for data analytics and management. More recently, TPC-DI is proposed as an industry benchmark for data integration. It is designed to benchmark the data integration and serve as a standardisation to evaluate the ETL performance. There are a variety of data quality problems such as multi-meaning attributes and inconsistent data schemas in source data, which will not only cause problems for the data integration process but also affect further data mining or data analytics. This paper has summarised typical data quality problems in the data integration and adapted the traditional data quality dimensions to classify those data quality problems. We found that data completeness, timeliness and consistency are critical for data quality management in data integration, and data consistency should be further defined in the pragmatic level. In order to prevent typical data quality problems and proactively manage data quality in ETL, we proposed a set of practical guidelines for researchers and practitioners to conduct data quality management in data integration.