2016
Decidability Results for Multi-objective Stochastic Games
BRENGUIER, Romain a Vojtěch FOREJTZákladní údaje
Originální název
Decidability Results for Multi-objective Stochastic Games
Autoři
BRENGUIER, Romain (250 Francie) a Vojtěch FOREJT (203 Česká republika, garant, domácí)
Vydání
Germany, International Symposium on Automated Technology for Verification and Analysis, od s. 227-243, 17 s. 2016
Nakladatel
Springer
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Německo
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Impakt faktor
Impact factor: 0.402 v roce 2005
Kód RIV
RIV/00216224:14330/16:00094154
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-46519-7
ISSN
UT WoS
000389808100015
Klíčová slova anglicky
stochastic games; multi-criteria optimisation
Změněno: 25. 10. 2024 16:28, Mgr. Natálie Hílek
Anotace
V originále
We study stochastic two-player turn-based games in which the objective of one player is to ensure several infinite-horizon total reward objectives, while the other player attempts to spoil at least one of the objectives. The games have previously been shown not to be determined, and an approximation algorithm for computing a Pareto curve has been given. The major drawback of the existing algorithm is that it needs to compute Pareto curves for finite horizon objectives (for increasing length of the horizon), and the size of these Pareto curves can grow unboundedly, even when the infinite-horizon Pareto curve is small. By adapting existing results, we first give an algorithm that computes the Pareto curve for determined games. Then, as the main result of the paper, we show that for the natural class of stopping games and when there are two reward objectives, the problem of deciding whether a player can ensure satisfaction of the objectives with given thresholds is decidable. The result relies on an intricate and novel proof which shows that the Pareto curves contain only finitely many points. As a consequence, we get that the two-objective discounted-reward problem for unrestricted class of stochastic games is decidable.