2018
Effective and Efficient Similarity Searching in Motion Capture Data
SEDMIDUBSKÝ, Jan, Petr ELIÁŠ a Pavel ZEZULAZákladní údaje
Originální název
Effective and Efficient Similarity Searching in Motion Capture Data
Autoři
SEDMIDUBSKÝ, Jan (203 Česká republika, garant, domácí), Petr ELIÁŠ (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Multimedia Tools and Applications, Springer US, 2018, 1380-7501
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 2.101
Kód RIV
RIV/00216224:14330/18:00100703
Organizační jednotka
Fakulta informatiky
UT WoS
000433202100021
Klíčová slova anglicky
Motion capture data retrieval;Effective similarity measure;Efficient indexing;k-NN query;Motion image;Convolutional neural network;Fixed-size motion feature
Štítky
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 16. 4. 2019 07:37, doc. RNDr. Jan Sedmidubský, Ph.D.
Anotace
V originále
Motion capture data describe human movements in the form of spatio-temporal trajectories of skeleton joints. Intelligent management of such complex data is a challenging task for computers which requires an effective concept of motion similarity. However, evaluating the pair-wise similarity is a difficult problem as a single action can be performed by various actors in different ways, speeds or starting positions. Recent methods usually model the motion similarity by comparing customized features using distance-based functions or specialized machine-learning classifiers. By combining both these approaches, we transform the problem of comparing motions of variable sizes into the problem of comparing fixed-size vectors. Specifically, each rather-short motion is encoded into a compact visual representation from which a highly descriptive 4,096-dimensional feature vector is extracted using a fine-tuned deep convolutional neural network. The advantage is that the fixed-size features are compared by the Euclidean distance which enables efficient motion indexing by any metric-based index structure. Another advantage of the proposed approach is its tolerance towards an imprecise action segmentation, the variance in movement speed, and a lower data quality. All these properties together bring new possibilities for effective and efficient large-scale retrieval.
Návaznosti
GBP103/12/G084, projekt VaV |
| ||
MUNI/A/0992/2016, interní kód MU |
|