2017
Multi-center machine learning in imaging psychiatry: A meta-model approach
DLUHOŠ, Petr, Daniel SCHWARZ, Wiepke CAHN, Neeltje van HAREN, René KAHN et. al.Základní údaje
Originální název
Multi-center machine learning in imaging psychiatry: A meta-model approach
Autoři
DLUHOŠ, Petr (203 Česká republika, garant, domácí), Daniel SCHWARZ (203 Česká republika, domácí), Wiepke CAHN (528 Nizozemské království), Neeltje van HAREN (528 Nizozemské království), René KAHN (528 Nizozemské království), Filip ŠPANIEL (203 Česká republika), Jiří HORÁČEK (203 Česká republika), Tomáš KAŠPÁREK (203 Česká republika, domácí) a Hugo SCHNACK (528 Nizozemské království)
Vydání
NeuroImage, San Diego, Academic Press Inc Elsevier Science, 2017, 1053-8119
Další údaje
Jazyk
angličtina
Typ výsledku
Článek v odborném periodiku
Obor
30103 Neurosciences
Stát vydavatele
Spojené státy
Utajení
není předmětem státního či obchodního tajemství
Impakt faktor
Impact factor: 5.426
Kód RIV
RIV/00216224:14110/17:00097266
Organizační jednotka
Lékařská fakulta
UT WoS
000405460900002
Klíčová slova anglicky
classification; combining models; first-episode schizophrenia; Machine learning; multi-center; prediction; support vector machines (SVM)
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 20. 3. 2018 17:37, Soňa Böhmová
Anotace
V originále
One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.
Návaznosti
LQ1601, projekt VaV |
|