D 2017

Detecting Attractors in Biological Models with Uncertain Parameters

BRIM, Luboš, Jiří BARNAT, David ŠAFRÁNEK, Nikola BENEŠ, Martin DEMKO et. al.

Basic information

Original name

Detecting Attractors in Biological Models with Uncertain Parameters

Authors

BRIM, Luboš (203 Czech Republic, guarantor, belonging to the institution), Jiří BARNAT (203 Czech Republic, belonging to the institution), David ŠAFRÁNEK (203 Czech Republic, belonging to the institution), Nikola BENEŠ (203 Czech Republic, belonging to the institution), Martin DEMKO (703 Slovakia, belonging to the institution), Samuel PASTVA (703 Slovakia, belonging to the institution) and Matej HAJNAL (703 Slovakia, belonging to the institution)

Edition

LNCS 10545. Cham, Computational Methods in Systems Biology. CMSB 2017, p. 40-56, 17 pp. 2017

Publisher

Springer International Publishing

Other information

Language

English

Type of outcome

Stať ve sborníku

Field of Study

10201 Computer sciences, information science, bioinformatics

Country of publisher

Czech Republic

Confidentiality degree

není předmětem státního či obchodního tajemství

Publication form

printed version "print"

Impact factor

Impact factor: 0.402 in 2005

RIV identification code

RIV/00216224:14330/17:00094899

Organization unit

Faculty of Informatics

ISBN

978-3-319-67470-4

ISSN

UT WoS

000542715600003

Keywords in English

model checking; systems biology; Computational Tree Logic; dynamical systems; distributed algorithms;

Tags

Tags

International impact, Reviewed
Změněno: 13/5/2021 13:12, doc. RNDr. David Šafránek, Ph.D.

Abstract

V originále

Complex behaviour arising in biological systems is typically characterised by various kinds of attractors. An important problem in this area is to determine these attractors. Biological systems are usually described by highly parametrised dynamical models that can be represented as parametrised graphs typically constructed as discrete abstractions of continuous-time models. In such models, attractors are observed in the form of terminal strongly connected components (tSCCs). In this paper, we introduce a novel method for detecting tSCCs in parametrised graphs. The method is supplied with a parallel algorithm and evaluated on discrete abstractions of several non-linear biological models.

Links

GA15-11089S, research and development project
Name: Získávání parametrů biologických modelů pomocí techniky ověřování modelů
Investor: Czech Science Foundation
LM2015055, research and development project
Name: Centrum pro systémovou biologii (Acronym: C4SYS)
Investor: Ministry of Education, Youth and Sports of the CR
MUNI/A/0992/2016, interní kód MU
Name: Zapojení studentů Fakulty informatiky do mezinárodní vědecké komunity (Acronym: SKOMU)
Investor: Masaryk University, Category A