2017
Sketches with Unbalanced Bits for Similarity Search
MÍČ, Vladimír, David NOVÁK a Pavel ZEZULAZákladní údaje
Originální název
Sketches with Unbalanced Bits for Similarity Search
Autoři
MÍČ, Vladimír (203 Česká republika, domácí), David NOVÁK (203 Česká republika, domácí) a Pavel ZEZULA (203 Česká republika, domácí)
Vydání
Cham, Similarity Search and Applications: 10th International Conference, SISAP 2017, Munich, Germany, October 4-6, 2017, Proceedings, od s. 53-63, 11 s. 2017
Nakladatel
Springer International Publishing
Další údaje
Jazyk
angličtina
Typ výsledku
Stať ve sborníku
Obor
10201 Computer sciences, information science, bioinformatics
Stát vydavatele
Švýcarsko
Utajení
není předmětem státního či obchodního tajemství
Forma vydání
tištěná verze "print"
Kód RIV
RIV/00216224:14330/17:00095051
Organizační jednotka
Fakulta informatiky
ISBN
978-3-319-68474-1
UT WoS
000616693000004
Klíčová slova anglicky
Similarity search; Metric space; Space transformation; Hamming space; sketch
Příznaky
Mezinárodní význam, Recenzováno
Změněno: 18. 5. 2018 09:22, RNDr. Pavel Šmerk, Ph.D.
Anotace
V originále
In order to accelerate efficiency of similarity search, compact bit-strings compared by the Hamming distance, so called sketches, have been proposed as a form of dimensionality reduction. To maximize the data compression and, at the same time, minimize the loss of information, sketches typically have the following two properties: (1) each bit divides datasets approximately in halves, i.e. bits are balanced, and (2) individual bits have low pairwise correlations, preferably zero. It has been shown that sketches with such properties are minimal with respect to the retained information. However, they are very difficult to index due to the dimensionality curse -- the range of distances is rather narrow and the distance to the nearest neighbour is high. We suggest to use sketches with unbalanced bits and we analyse their properties both analytically and experimentally. We show that such sketches can achieve practically the same quality of similarity search and they are much easier to index thanks to the decrease of distances to the nearest neighbours.
Návaznosti
GBP103/12/G084, projekt VaV |
|